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Abstract

 

—In this paper, we consider the model of concurrent computations developed for logic programming
of Internet agents. The purpose of creating this model of computations is to ensure the mathematical strictness
of searching and recognizing information on the Internet. In the developed model of computations, the inter-
acting concurrent processes have classical model-theoretic semantics. The model of computations is based on
the new principle of interaction of processes, which do not require delay for synchronization. On the basis of
this model, we have developed and implemented the concurrent object-oriented logic language and also the
tools for visual logic programming of Internet agents.

 

Received February 28, 2003

1

 

INTRODUCTION

Internet agents are programs that automate retrieval,
recognition, extraction, and analysis of information on
the Internet oriented toward the needs of an individual
user (or group of users). Agents differ from the widely
used Internet retrieval systems in the following:

(1) they can autonomously operate during long peri-
ods of time (days, weeks, or more) for performing the
task set by the user;

(2) as any other program, once created, an agent can
be used many times, whereas a query to a universal
retrieval system invokes a single operation of informa-
tion retrieval.

At present, no universally accepted definition of
agents exists. However, programs that are autonomous,
reactive (i.e., react to external stimuli), proactive (e.g.,
capable of planning further actions themselves), and
exhibit a social behavior (if there is a system of several
agents) [1, 2] are conventionally called agents.

One of the most interesting and perspective
approaches to programming Internet agents is logic
programming of agents [1, 3, 4]. The urgency of this
approach is determined, in particular, by the fact that
the ideology and principles of logic programming cor-
respond to the problems of retrieval, recognition, and
analysis of ill-structured and also hypertext informa-
tion [24, 26]. However, the main advantage of logic
programming is the fact that, in the framework of this
approach, there exist criteria for evaluating the mathe-
matical strictness of information processing methods,
namely, the model-theoretic semantics of programs and
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also the notions of soundness and completeness of logic
programs.

Over the past decade, a large number of methods
and means of logic programming of Internet agents
were developed. They are based on different modifica-
tions and extensions of the Prolog language and also on
nonclassical logics (linear, modal, F-Logic, etc.) [1, 3,
4, 24]). However, up to now, no mathematical apparatus
which could provide sound and complete work of logic
programs (agents) in a dynamic external environment
(i.e., in conditions of permanent change and augmenta-
tion of information in the Internet) was created.

To solve this problem, we have developed the logic
model of concurrent computations based on the princi-
ple of repeated proving of subgoals [21–26]. In the
framework of our model, the Internet agent is a system
of interacting concurrent processes. The main distinc-
tion of the developed model is the fact that it presumes
the existence of classical model-theoretic semantics of
Internet agents functioning under conditions of infor-
mation change and augmentation. For this purpose, in
the framework of the model, the classical model-theo-
retic semantics of individual concurrent processes and
of the system of interacting processes as a whole are
introduced.

In the first section of the paper, we consider the prin-
cipal elements of our computational model: processes,
messages, and the so-called “residents.” In the second
section, we consider the declarative semantics and
mathematical properties of concurrent programs. In the
third section, we discuss the use of the developed
model for the visual component-oriented programming
of Internet agents. In the fourth section, our approach to
programming Internet agents is compared with other
approaches.
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1. BASIC COMPONENTS 
OF THE COMPUTATIONAL MODEL

The principle of interaction of concurrent processes
developed by the author and his colleagues is a gener-
alization of the method of speculative computations
applied to the field of artificial intelligence and also to
the hardware implementation of computing devices.
The idea of speculative computations implies that cer-
tain branches of the algorithm can be implemented in
advance, prior to the moment when it becomes clear
whether the obtained data are needed for further pro-
gram execution. The use of this idea and the mathemat-
ical apparatus of logic programming makes it possible
not to delay concurrent processes for their synchroniza-
tion. Instead of delaying the processes, we use a modi-
fication of logic inference; as a result, the general
scheme of interaction of concurrent processes can be
represented as follows.

Each process performs computations with data
available at the present moment. If some data are not
yet received, the process performs computations with
incomplete data. As is shown below, the developed
strategy of execution of logic programs is sound with
respect to their declarative semantics; therefore, any
results obtained during computations are correct with
respect to the declarative semantics of the program.
Computations with incomplete input data can be
regarded as a certain form of computing by default.
Subsequently, when new or modified input data arrive
in the process, the conducted computations are modi-
fied and the earlier obtained results are refined.

Modification of logic inference in our computation
model is based on the principle of the repeated proving
of subgoals [21–26]. The developed model is imple-
mented in the concurrent version of the object-oriented
Actor Prolog logic language [21, 26]. Therefore, to
simplify the presentation in this paper, we will use the
notions and syntactic notation of this language.

 

1.1. Processes

 

The process in the concurrent Actor Prolog is the
class instance, whose clauses are executed concurrently
relative to clauses of other processes. In the Actor Pro-
log, the processes are denoted by enclosing the con-
structor of the class instance in double parentheses:

((ClassName, attribute1=Value1, …,

attributeN=ValueN))

The transmission of information between processes
in our model is carried out by means of the following
mechanisms:

(1) A process can perform an asynchronous predi-
cate call in another process.

(2) A process can pass information to other pro-
cesses by changing the value of their common variable.
The arguments of the corresponding constructors of
class instances can be such common variables.

(3) We have developed a special mechanism to
transfer information between processes (the so-called
residents) resembling the setof statement of the stan-
dard Prolog.

Thus, the processes can interact through common
variables and also by means of predicate calls. That is
why, in contrast to the classical object-oriented compu-
tational model using only one kind of message, two
kinds of messages are distinguished in our model,
direct and flow messages.

When a process handles the obtained message, its
state changes. The period of process execution corre-
sponding to the processing of a certain message is
called a phase of process execution. At each phase of
the process execution, the corresponding subgoals of
the proof (logic actors [21–26]) are proved in accor-
dance with the information that has come from the out-
side. Depending on the results of repeated proving of
actors, the process is transferred into one of the follow-
ing three states
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 (see Fig. 1):
(1) A proven process. This state is characterized by

the consistency of all actors of the process (the proof of
all actors was successful).

(2) A failed process. This state is characterized by
the fact that actors of the process are inconsistent.

(3) An unused process. The unused process can be
considered as some offline component of a computing
device. The processes automatically pass into the
unused state and automatically recover from this state
when certain special flow messages are obtained. These
messages will be considered below.

The process in the unused state performs no opera-
tions, and all messages sent to it are accumulated in the
buffer. Using the unused processes, the agent changes
its structure in the course of execution.

 

1.2. Messages

 

The difference between flow and direct messages
consists in the following.

(1) Direct messages are passed directly from one
process to another (in the form of the predicate call),
while the flow messages are passed from one to many
processes (by changing the values of common vari-
ables).
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In the definition of the Actor Prolog [21], one more auxiliary state
arising in the course of process construction is considered addi-
tionally.

 

O.K. FAILED UNUSED

 

Fig. 1.

 

 States of the process. (a) Proven process, (b) failed
process, (c) unused process.

 

(a) (b) (c)
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(2) Direct messages are not lost in the course of
communication, while the flow messages can cancel
one another if a new (updated) value of a common vari-
able arrives before the processing of the previous value
has started.

Before the direct and flow messages are transmitted,
all unbound variables in the composition of the corre-
sponding predicate and terms are replaced by a special
constant #. This prevents the chaining of variables that
belong to different processes. This transformation does
not violate the soundness of the logic program in
respect to its declarative semantics.

Flow messages are processed in the Actor Prolog in
the following way. When the value of the common vari-
able 

 

V

 

 that links the recipient process 

 

P

 

 to other pro-
cesses is changed, the destructive assignment 

 

V

 

 :=

 

NewValue

 

 is performed in the process 

 

P

 

. The result of
this operation is the repetitive proving of certain actors
of the process 

 

P

 

. In Fig. 2, we present the graphic sym-
bols used to denote flow messages.

Common variables that connect processes are called
ports. In our computational model, special means for
controlling flow message transmission are introduced.
The process can declare a certain value of the common
variable protected. In this case, other processes are for-
bidden to assign this variable the ordinary (unpro-
tected) values. A protected value of a common variable
can only be replaced by another protected value. In the
Actor Prolog, the special keyword 

 

protecting

 

 is intro-
duced for creating protected values of common vari-
ables. The keyword is assigned to the definitions of
slots of class instances and also to the arguments of the
constructors of processes, i.e.,

((ClassName,…, 

 

protecting

 

: attributeN=ValueN,…)).

Note that, in the case where the process passes to the
state failed or unused, the flow messages transmitted by
it (including protected ones) are canceled. To do this,
special empty values are sent through all the ports of
the process; these values can be further replaced by any
protected or unprotected values by other processes.

Another keyword, 

 

suspending

 

, is used to declare
the so-called suspending (switching off) ports:

((ClassName,…, 

 

suspending

 

: attributeN=ValueN,…)).

Suspending ports serve for automatic passing of
processes in the unused state and for their automatic
recovering from this state. When a special constant # or

empty value is received through the suspending port,
the process is automatically passed to the unused state.
When the values of all suspending ports of a process
become not equal to # and to empty values, it will auto-
matically restore its former state.

Using the suspending ports, one can create recursive
definitions of processes, i.e., definitions of classes
which recursively include the constructors of instances
of the same class. In the general case, an attempt to cre-
ate the instance of such a class leads to the construction
of an infinitely large number of processes and to mem-
ory overflow. However, the use of suspending ports
makes it possible to gradually construct new processes
as information arrives at the suspending ports of the
corresponding constructors. Thus, the Actor Prolog
makes it possible to describe systems consisting of infi-
nite number of processes and create new processes as
necessary.

The ports which are neither protecting nor suspend-
ing are called plain (simple). In Fig. 3, we present
graphic notation for different ports of processes.

In our computing model, direct messages are asyn-
chronous, as also are the flow messages. In the course
of execution of clauses of a process, it can call the pred-
icate of another process (i.e., send a direct message) by
using special operations of sending direct messages:

Target << predicate (A, B, …, C),

Target 

 

<–

 

 predicate (A, B, …, C).

Such an operation is always successful and does not
affect the further execution of the sending process. The
sending of direct messages is suspended up to the com-
pletion of the current phase of process execution and is
performed if and only if this phase is completed suc-
cessfully. In addition, the operations of sending direct
messages are canceled in the backtracking of the logic
program.

The infix << denotes the co-called informational
direct messages, and the infix 

 

<–

 

 denotes the switching
direct messages. These kinds of direct messages differ
in the following.

(1) As a result of processing of a switching direct
message, the process can become either proven or
failed, while after processing of an informational direct

 

Sender Receiver

 

Fig. 2.

 

 Flow messages.

 

Process
protecting port

suspending port

plain port

 

Fig. 3.

 

 Ports of processes.
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message, the process is always proven. If the execution
of an informational direct message fails, this message is
simply ignored and the process restores its former state.

(2) In contrast to switching direct messages, pro-
cessing of informational direct messages is suspended
until the recipient process becomes proven. The sus-
pended messages are accumulated in the buffer.

In Fig. 4, we present the graphic notation used for
different kinds of direct messages.

Note that the rules of processing flow messages cor-
respond to the rules of processing switching direct mes-
sages considered above. Thus, the flow messages can
be called switching flow messages.

 

1.3. Residents

 

In our computing model, the resident is a certain
active entity observing the state of the assigned (target)
process and sending the collected information to its
owner. The owner of a resident is a certain process. In
the Actor Prolog, the residents are defined via special
formulas of the form

slot = target_world ?? function (A, B, …, C).

Such a formula can be assigned in the form of the
argument of the constructor of the class instance or as a
definition of a slot as a part of the class. In the general
case, the following correspond to each resident of the
program:

(1) The owner of the resident. The owner of the res-
ident is the process that has created it.

(2) The atomic formula 

 

function

 

(

 

A

 

, 

 

B

 

, …, 

 

C

 

). This
formula denotes the call of a certain function (nondeter-
ministic in the general case) which must be executed in
the target process. The functions in the Actor Prolog are
implemented with the help of the standard technique of
program flattering [27].

(3) The target process of a resident, 

 

target_world

 

.
(4) A certain common variable 

 

slot

 

. Using this vari-
able, the resident sends the collected information to its
owner.

A resident automatically executes the assigned
function in the search space of the target process. The
resident creates the list of all computed values of the
function and then orders this list and deletes repeated
elements. After that, the resident sends the list of values

of the function to its owner in the form of a protected
flow message.

The resident permanently observes the state of the
assigned target process. After each change in the state
of the target process, the resident repeats the construc-
tion and sending of the list of values of the function. In
addition, the resident can receive the information from
its owner in the form of flow messages through the
arguments of the corresponding atomic formula. When
new values of arguments are received, the resident also
performs the repetitive execution of the assigned func-
tion and sends the collected information.

Figure 5 gives a graphic representation of the resi-
dents used in our computing model.

 

1.4. An Example of the Graphic Description 
of the Agent

 

Let us consider an example of the graphic descrip-
tion of the Internet agent collecting data with the use of
the 

 

Google

 

 and 

 

Rambler

 

 search engines. In Fig. 6, the
functional diagram is presented. It uses the notation
considered above.

Process 1 performs the interaction with a user. It
inputs the list of keywords and sends to Processes 2 and
3 the switching direct message, which starts up the
search process. Processes 2 and 3 interact with the cor-
responding search engines and accumulate the received
addresses in local databases. The collected addresses
are included into lists by residents and passed to Pro-
cess 4 in the form of flow messages. Process 4 merges
the lists of addresses and passes them to Process 5,
which performs additional filtering of the received ref-
erences. The necessary technique of checking Web
pages is implemented in Process 6. Note that Process 6
passes itself into Process 5 via the flow message in
order that Process 5 uses it as a filtering instrument. The
list of checked addresses is passed to Process 7, which
demonstrates the found addresses in the dialog box and
makes it possible for the user to look through the found
resources with the use of a standard Internet browser.

In the next section, we consider the declarative
semantics of the elements of the computing model out-
lined above.

 

ReceiverSender

 

. . . . . . . .

. . . . . . . . . .
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Fig. 4.

 

 Direct messages.
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Fig. 5.

 

 Resident.
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2. MODEL-THEORETIC SEMANTICS
OF CONCURRENT PROGRAMS

The model-theoretic semantics of logic programs is
an important instrument evaluating the mathematical
strictness of implemented algorithms. Using the model-
theoretic semantics, one can evaluate the following:

(1) Soundness of algorithms. As will be shown
below, the Actor Prolog ensures the soundness of pro-
grams (including concurrent ones) with respect to their
model-theoretic semantics. Thus, we can be sure that
the program will never compute (incorrect) values that
do not belong to its model-theoretic semantics.

(2) Completeness of algorithms. Provided that cer-
tain conditions are fulfilled, we can guarantee the com-
pleteness of the logic program. This means that the pro-
gram implements an exhaustive search and finds all
existing solutions of the posed problem. Unfortunately,
far from all logic programs are complete in respect to
their declarative semantics.

An important merit of our computing model is the
fact that it ensures the existence of classical (that is,
based on the first-order predicate logic) model-theo-
retic semantics of concurrent programs.

 

Definition 2.1.

 

 We say that the logic program has
attained its successful final state if (i) all the processes
of the program are proven or unused, (ii) activation of
residents is not required, and (iii) the processing of no
messages by processes and residents is required.

 

Definition 2.2.

 

 The result computed by the program
is the values of common variables connecting the pro-

cesses of a program that has reached a successful final
state.

Model-theoretic semantics will be defined in the fol-
lowing way. Below, we will define the scheme of trans-
formations of an arbitrary concurrent logic program 

 

P

 

into a sequential program 

 

P

 

', for which the existence of
the classical model-theoretic semantics is guaranteed.
The declarative semantics of the program 

 

P

 

' will be
taken as the semantics of the source program 

 

P

 

.
To construct the desired program 

 

P

 

', we perform the
following transformations:

(1) We remove from the text of the program 

 

P

 

 all
nonlogic built-in predicates.

(2) We replace all the constructors of processes in
the text of the program by usual constructors of class
instances (that is, in the constructors of processes, we
replace double parentheses by ordinary ones). Thereby
the concurrent logic program will be transformed into a
sequential program.

(3) We model the operation of suspending ports via
auxiliary predicates. For example, the behavior of the
process with the goal statement 

 

goal

 

 and two suspend-
ing ports 

 

x

 

 and 

 

y

 

 will be modeled by means of redefin-
ing the goal statement. The new goal statement 

 

goal

 

'
will be defined in the following way:

 

3

 

goal ' :-
x == #;

goal' :-
y == #;

 

3

 

 In the Actor Prolog, the operator == corresponds to the ordinary
equality = of the standard Prolog.

 

Input
Keywords

Consult
GOOGLE

Consult
RAMBLER

Merge
Lists

Check
Resource

Filter
List

Browse
List

1

2

4

5

7

6

3

R

R

 

Trigger
message

List of
keywords

List of
URLs

Testing
process

List of
URLs

List of
URLs

List of
URLs

 

Fig. 6.

 

 Graphic description of the Internet agent.
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goal' :-
ground_term(x),

 

not

 

 x == #,
ground_term(y),

 

not

 

 y == #,
goal. -- 

 

Old

 

 

 

goal

 

 

 

statement

 

.
The auxiliary predicate 

 

ground_term

 

 is nondeter-
ministic; it bounds the argument with all elements of
the Herbran universe. This predicate is necessary in
order to guarantee the correctness of using the state-
ment 

 

not

 

 at the given point of computations. In the gen-
eral case, this predicate outputs an infinite number of
answers; therefore, this transformation can lead to infi-
nite loop in the case where the standard control strategy
of Prolog is used. However, at the moment, the only
thing that matters is the presence of the declarative
semantics of the program.

(4) The operation of residents will be also modeled
by redefining goal statements and auxiliary predicates.
For instance, if the initializer of one of the slots is a con-
structor of the resident of the form 

 

slot

 

 = 

 

target

 

 

 

??

 

 

 

func-
tion

 

(

 

a

 

, 

 

b

 

, …, 

 

c

 

), we redefine the goal statement 

 

goal

 

 of
this class as

goal' :-
setof(a, b,…, c, [], Results),
slot == Results,
goal. --

 

 Old goal statement.

 

The operation of constructing the list of solutions
returned by the function 

 

function

 

(

 

A

 

, 

 

B

 

, …, 

 

C

 

) will be
implemented according to the following scheme:

setof(A, B,…, C, Results, Total) :-
Result== target ? function(A, B,…, C),
ground_term(Result),

 

not

 

 is_element(Result, Results),
setof(A, B,…, C,[Result | Results], Total);

setof(A, B,…, C, R, Total) :-

 

not

 

 has_another_solution(A, B,…, C, R),
sort (R, Total);

has_another_solution(A, B,…, C, Results) :-
Result== target ? function(A, B,…, C),
ground_term(Result),

 

not

 

 is_element (Result, Results).
The auxiliary predicate 

 

is_element

 

 checks whether
the value 

 

Result

 

 is contained in the list. The auxiliary
predicate 

 

sort

 

 puts the elements of the list in order and
removes the repeated elements. For sorting the ele-
ments of the list, we use the lexicographic ordering.
The auxiliary predicate 

 

ground_term

 

 guarantees the
correctness of the use of the 

 

not

 

 statement.
(5) We remove all operations of sending direct mes-

sages from the text of the program. As was already
noted, direct messages in our model are strictly asyn-
chronous and are always successful. Thus, from the

point of view of the declarative semantics, these mes-
sages can be ignored.

(6) We remove from the text of the program the key-
words 

 

protecting

 

.
(7) We have obtained a sequential object-oriented

program. The object-oriented constructions of the
Actor Prolog can be easily modeled in the pure Prolog
by simple renaming the predicates and adding certain
auxiliary arguments. The detailed algorithm of such
transformations can be found in [22].

As a result of transformations, we obtain the
sequential program 

 

P

 

' in the pure Prolog with the 

 

not
statement. The not statement is not used in the Actor
Prolog language. Thus, in the program P', the not state-
ment is used only for modeling the special construc-
tions of the language considered above. Therefore, P' is
stratifiable and, hence, possesses the classical model-
theoretic semantics.

Definition 2.3. The model-theoretic semantics of
the concurrent program P is the model-theoretic
semantics of the sequential program P' constructed
according to rules (1)–(7).

Theorem 2.1. A concurrent logic program is sound
in respect to its model-theoretic semantics.

Sketch of a proof. Considering the AND-tree of the
program P in the course of transformations (1)–(7), one
can verify that it can only decrease (at Step 1). Thus, the
AND-tree of the program P' covers by no means less
solutions than the program P. That is, the program P
cannot compute the solutions not covered by the pro-
gram P' (and, therefore, incorrect with respect to the
model-theoretic semantics).

Of course, in the general case, the concurrent pro-
gram P does not possess the completeness relative to its
model-theoretic semantics. To ensure the complete-
ness, it is necessary to impose constraints on the syntax
of the program.

Theorem 2.2. The concurrent program P is com-
plete in respect to its model-theoretic semantics if we
have the following:

(1) There are no nonlogic built-in predicates in the
text of the program.

(2) Direct messages are not used. Information
between processes is transmitted only via the flow mes-
sages.

(3) The program does not get caught in an endless
loop in the course of executing goal statements and
functions of residents.

(4) The functions called by residents always return
a finite number of values.

(5) Predicates computing data which are then sent
by means of flow messages are deterministic.

(6) Information is transmitted between processes
along one-direction channels only. The unidirectional
data transmission in the Actor Prolog can be modeled
by means of the keyword protecting.
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(7) There is a partial ordering of processes exchang-
ing information. That is, there is no recursive transmis-
sion of data between the processes and residents in the
program.

(8) All values computed by processes and residents
which must be passed to other processes and residents
are ground (i.e., they do not contain unbound vari-
ables).

Sketch of the proof. There are five possible reasons
for incompleteness of the concurrent program in
respect to the declarative semantics. The first reason is
incompleteness of computations performed inside
some process. To eliminate this reason, conditions (1)
and (3) are introduced. The second possible reason is
the impossibility to transfer the backtracking between
processes. Conditions (5) and (6) guarantee that if a
process has computed and passed a certain solution into
another process, then no other solution exists. There-
fore, the backtracking is not necessary since it all the
same would not help to find other solutions. The third
possible reason for incompleteness is the replacement
of unbound variables by the constant # during informa-
tion transmission between processes. Condition (8)
removes this reason. The fourth reason is infinite com-
putations which may arise in the course of program
execution. Such infinite loops of a program are pre-
vented by conditions (3), (4), and (7). The fifth possible
reason is the presence of several successful final states
of a program. Specifically, the program can have sev-
eral final states if (a) the direct messages with a gener-
ally unpredictable order of the processing are used in it;
and (b) data are transmitted recursively and it is impos-
sible to predict the order in which the processes related
by common variables will be executed. To prevent these
cases, we have introduced conditions (2) and (7),
respectively. Therefore, provided that the enumerated
conditions (1)–(8) are met, the program will be com-
plete in respect to the model-theoretic semantics.

Thus, the concurrent computations in our model
possess not only the operational but also the model-the-
oretic semantics. The soundness of the program is guar-
anteed, and, under certain conditions, the completeness
of the program with respect to the model-theoretic
semantics is also guaranteed. This means, in particular,
that the logic language can be used for writing concur-
rent programs that perform an exhaustive search. This
makes it possible to conclude that the developed model
of concurrent computations and the concurrent object-
oriented logic language implement the principles of
logic programming mathematically strictly.

3. IMPLEMENTATION AND PRACTICAL USE 
OF MATHEMATICAL APPARATUS

In the majority of cases, the tasks of collecting and
processing information which require automation with
the help of intelligent agents have individual character
and are formulated by concrete users. Therefore, to

achieve a real economic effect from using agents, it is
necessary to create technologies for programming
agents which would maximally facilitate and simplify
the development of such programs by final unskilled
users. Ideally, the creation of the Internet agent must be
as simple as the compilation of the query to the general-
purpose retrieval system. The developed methods and
means of logic programming create necessary prerequi-
sites for the solution of this problem. Based on the cre-
ated mathematical apparatus, the Actor Prolog, concur-
rent object-oriented logic language, is developed (the
definition of the language including all new features
can be found on the site listed in [21]). In the recent ver-
sions of the language, special means for supporting the
development of the Internet agents were introduced:

(1) predefined classes for getting information
according to HTTP and FTP Internet protocols;

(2) visual programming means including the trans-
lator of SADT diagrams into the concurrent Actor Pro-
log and the user interface management system based on
the SADT diagrams; 

(3) packages and other syntactic means necessary
for the implementation of the visual component-ori-
ented programming.

At present, we have implemented the operating pro-
totype of the system of logic programming of Internet
intelligent agents on the basis of the developed mathe-
matical apparatus and the Actor Prolog language. The
developed system makes it possible to create agents for
the retrieval and analysis of information on the Internet.
The use of the object-oriented logic approach substan-
tially simplifies the creation of Internet agents and also
their subsequent support and modification.

4. COMPARISON WITH OTHER APPROACHES

The developed method of programming the Internet
agents and the model of concurrent computations
embodies several ideas, each of which must be consid-
ered separately and compared with earlier approaches.

4.1. Visual Programming of Internet Agents 
via Functional Diagrams

The idea of visual programming of Internet agents
via functional diagrams was successfully realized ear-
lier by Mosconi and Porta [6]. They developed the
VIPERS system [6] on the basis of a special kind of data
flow diagrams. As compared with our system of visual
programming of Internet agents, the VIPERS system
possesses better graphic interface, but the blocks of dia-
grams are implemented in the imperative language.
Thus, the VIPERS system does not support the declara-
tive semantics of Internet agents and does not ensure
the mathematical strictness of procedures of search and
recognition of information in the dynamic Internet
environment.
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4.2. Concurrent Programming of Agents

The expedience of using the flow parallelism for the
development of languages for programming Internet
agents was also demonstrated in the WebL project of
Kistler and Marais [7] (on the basis of combinators
developed by Cardelli and Davies [8]), Webstream by
Hong and Clark [9], WebScript by Zhang and Keshav
[10], and information gathering plans by Barish and
Knoblock [11]. The listed languages are imperative
and, thus, have the same drawback as the system
VIPERS mentioned earlier.

The logic programming languages for the Internet
agents developed earlier, such as the concurrent Log-
icWeb developed by Davison and Loke [5], W-ACE by
Pontelli and Gupta [12], Jinni by P. Tarau [13], OZ [14]
developed under the direction of G. Smolka, DLP
developed by Eliens and de Vink [15], ObjVProlog-D
by Malenfant, Lapalme, and Vaucher [16], etc. [4],
ensure the existence of the declarative semantics of
agents but do not support the modification of logic
inference in the dynamic external environment and,
therefore, do not ensure the mathematical strictness of
Internet agents.

4.3. Modifiable Reasoning in Multiagent Systems

As a promising approach to the logic programming
of Internet agents in the dynamic external environment,
the use of nonclassical (and, in particular, nonmono-
tonic logic systems) [3, 17, 18] is considered. We have
chosen a principally different way, strictly adhering to
the formalism of classical first-order logic. In our
model of computations, the modification of reasoning
necessary for the correct logic interpretation of changes
in the external world is implemented via a special con-
trol strategy of logic language based on the principle of
repeated proofs. This made it possible to mathemati-
cally strictly interpret the dynamic character of the
Internet environment without loosing the expressive
and deductive properties of the classical first-order
predicate logic. Note that our approach is free from the
drawbacks of nonmonotonic logic systems, such as
absense of general validity of deduced formulas (in the
classical sense), dependence of the result on the order
of application of the inference rules, and the high prob-
ability of looping of logic programs.

4.4. Speculative Computations in Multiagent Systems

One of the most interesting directions in the pro-
gramming of agents is speculative computations. Using
this principle for the control of the process of gathering
data from the Internet, Barish and Knoblock [11]
achieved a significant increase in Internet agent speed.
The same idea at a higher level of abstraction was stud-
ied in the work of Inoue, Kawaguchi, and Haneda [19]
and also in the work of Satoh and Yamamoto [20]. It
should be also noted that the idea of speculative com-

putations is used in the OZ language [14] instead of
backtracking.

Our model can also be considered as the implemen-
tation of the idea of speculative computations, since the
synchronization of concurrent processes is not used in
the Actor Prolog. This means that, in our model of com-
puting, concurrent processes never wait for data from
other processes and all computations performed by the
program are in fact speculative computations. Thus, our
model of computing is a mathematical basis for imple-
menting speculative computations in multiagent sys-
tems.

CONCLUSIONS

The mathematical apparatus of logic programming
of intelligent agents performing the search and recogni-
tion of information in a complex structured dynamic
Internet environment is developed. The developed
mathematical apparatus is based on the principle of the
repetitive proving of subgoals, which makes it possible
to modify the logic reasoning during and after the exe-
cution of logic programs by putting them in correspon-
dence with the new information incoming from outside.

Based on the developed apparatus of modifiable rea-
soning, we have created the Actor Prolog, concurrent
object-oriented logic language, which ensures the cor-
rectness of logic programs (intelligent agents) function-
ing under conditions of permanent change and updating
of information.

The developed tools make it possible to create per-
sonal systems (agents) for gathering and analyzing
information on the Internet. The use of the object-ori-
ented logic approach substantially simplifies the cre-
ation of Internet agents, as well as their subsequent sup-
port and modification. The developed approach sup-
ports visual and component-oriented programming of
Internet agents.
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