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Abstract. This article considers the following central ideas underlying
Actor Prolog: the classes and worlds, the mechanism of repetitive proof
of subgoals, the underdetermined sets. The logical means of Actor Prolog
cover the definitional possibilities of structural, dynamic and information
aspects of the object-oriented programming. The most interesting idea
of Actor Prolog is the repetitive proof of subgoals, that allows imple-
mentation of the operation of destructive assignment and thus is a new
solution of the frame problem. All the logical means of Actor Prolog have
a classical declarative (model-theoretic) semantics.

Introduction

Actor Prolog is a carefully designed object-oriented logic language. The purpose
of the development of this language is in generalization of the object-oriented
approach (OOA) in programming, analysis and designing of information systems
on the basis of pure logical means with a strict declarative semantics.

What are the problems in the area of OOA, that we hope to resolve with the
help of logic programming?

First, it is the problem of analysis of semantic correctness of complicated
artificial systems. The object-oriented approach gives perfect possibilities for
construction of models of complicated systems, but only object-oriented lan-
guages with strict declarative semantics are suitable for logical analysis of the
systems (not just for the programming).

Another very important area of research is programming of reactive com-
puter systems working in conditions of nonmonotonic external environment. We
suppose that logic object-oriented languages are very promising for this aim, be-
cause they have the model-theoretic semantics, that is invariant to unpredictable
behavior of external environment.

The third problem is of maintenance of correctness of program systems. Cur-
rently the idea of “design by contract” based on logical description and analysis
of pre- and post-conditions of operations on objects is popular in OOA. But we
suppose that it is much more natural and easier to write the programs using
object-oriented logic language.



Our approach to developing of the logic OOA is considered in the first section
of the article. In second, third and fourth sections the following logical means
developed within the framework of our project and implemented in Actor Prolog
are considered: the classes and worlds, the mechanism of repetitive proof of sub-
goals (the “actor mechanism”) and the underdetermined sets. The fifth section
is about related works. In the conclusion we discuss the possibilities connected
to the usage of developed logical means in the area of visual man-machine in-
terfaces, decentralized artificial intelligence, object-oriented deductive databases
and computer aided software engineering.

1 A Logical Interpretation of OOA

The relations between the logic programming and OOA have a long history and
an extensive bibliography coverage (see, for example, [9, 34, 29, 25, 33]). Making
analysis of this area of research we came to conclusion, that the idea of “object”
of the imperative OOA doesn’t have an univalent implementation in the logic.
All attempts “to transfer” this idea to logic languages break it up to, at least,
three separate aspects, that have the special definitional possibilities, theoretical
problems and means of implementation:

1. The structural aspect of OOA: the “objects” in the imperative programming
are the natural means of structuring the program. In logic programming this
aspect refers to the logic program text structuring and the special facilities
that control the search space.

2. The dynamic aspect of OOA reflects the possibilities related to the modifica-
tion of the objects in the imperative OOA. This aspect causes the greatest
difficulties in the theory of logic programming; there are very hard problems
of integrating objects with logic programming – persistent vs. backtrackable
state, for instance.

3. The information aspect of OOA is associated with the problem of description
of complicated data structures.

We suppose that developing the complete object-oriented logic language re-
quires a “logical interpretation of OOA” – a set of logical means covering (in the
aggregate) all the definitional possibilities of all listed aspects of OOA. In Actor
Prolog the following logical means are used for this purpose:

1. Classes, worlds and inheritance.
2. The mechanism of repetitive proof of subgoals.
3. Terms, including the so-called underdetermined sets.

The developed syntactic constructions are in fact the modified formulae of
the first order predicate logic, that are only logical analogs of some imperative
programming features: classes, actors, underdetermined sets, operation of de-
structive assignment and others. So, all the logical means of Actor Prolog have
a strict and clear declarative semantics.



2 Classes, Worlds and Inheritance

In Actor Prolog the mechanism of classes is used to control the topology of the
search space of the program.

By analogy to the classes in the imperative OOA the syntactic constructions
(the “classes”) for structuring the program text are used in Actor Prolog.

A class in Actor Prolog is a set of clauses. Just as in imperative programming
languages each class has an unique name and all classes are elements of an
inheritance hierarchy.

The concept “instance of class” of the imperative programming has an analog
in Actor Prolog too. The instances of classes (the “worlds”) in Actor Prolog are
applications of classes, but imperative operation new (as, for example, in C++)
doesn’t exist in the language. In Actor Prolog instances of classes are built during
the proof of special formulae, that are named “constructors”.

The logical essence of the instances of classes in Actor Prolog implies an im-
portant difference from their imperative analog. Namely, the instances of classes
in Actor Prolog are deleted during backtracking of the program. There are no
analogs of imperative operation delete and concept “destructor” in Actor Prolog.

Another important feature of Actor Prolog is that in this language the “in-
stance of class” and the “data item” are different concepts, contrary to such
imperative object-oriented languages as Smalltalk and C++. The reason for this
is that in an object-oriented language the principle of uniqueness of instances
of classes is convenient. In other words, it is convenient to consider all instances
of classes (even referring to the same class) as different entities, that, for exam-
ple, cannot be unified. This principle does not allow to consider the compound
terms of the language as instances of classes, because it would make senseless
the resolution mechanism (so doing, we cannot unify two different instances of
the same compound term [1, 2, 3] 6≡ [1, 2, 3], for instance).

So, the instances of classes and the data items are different concepts in Actor
Prolog. And the instances of classes in the language are named “worlds” (instead
of “objects”) just for this reason.

The instances of classes are constituents of the search space during the exe-
cution of the program. The instance of class includes:

1. The clauses of the class and its ancestors in the inheritance hierarchy.
2. The set of “slots” of the instance.

The inheritance mechanism of Actor Prolog is analogous to similar mecha-
nisms in the imperative object-oriented languages. But it has slightly different
operational semantics: the hierarchy of inheritance determines the rules of search
of the clauses of the program. For example, if the search space for some predicate
p is an instance of class A, the search of the appropriate clause with heading p
will be carried out among the clauses of class A, then among the clauses of the
direct ancestor of class A, and so on.

Thus, the overriding of clauses doesn’t exist in Actor Prolog, though it can
be simulated using the non-logical built-in predicate cut ’ !’. Also multiple inher-
itance isn’t used in Actor Prolog (there can be only one direct ancestor of the



class), because in the opposite case the search order for the clauses of parent
classes would be not clear and should be determined artificially.

A slot is a “global variable” of an instance of class. The names of the slots
are called “attributes of classes”.

The attributes must be declared in all the classes, in which they are used.
In the declaration of attributes the “initializers” defining the values of slots can
be used. The initializers are terms, constructors of worlds or other attributes of
the class.

Let’s consider an example of class definition:

class ’ADDER’ specializing ’ALPHA’ is
a
b = 0 – – The definition of the attributes of
c1 = 0 – – the class. The slots “b” and “c1”
sum – – contain 0 by default.
c2
[ – – The clauses of the class.
table(0,0,F, F,0). table(0,1,0, 1,0).
table(0,1,1, 0,1). table(1,0,0, 1,0).
table(1,0,1, 0,1). table(1,1,F, F,1).
get state(sum).
goal:–

table(a,b,c1,sum,c2).
]

The class ’ADDER’ represents a complete binary adder. The attributes a, b and
c1 designate the addends of the adder and the source carry bit. The attributes
sum and c2 designate the sum and the target carry bit. The class ’ALPHA’ is
the direct ancestor of the class ’ADDER’.

The proof of the constructor (the construction of an instance of some class
C) includes the following stages:

1. The formation of the instance of the class:
(a) The construction of the appropriate search space.

The search space will include the clauses of class C and also the clauses
of all ancestors of class C.

(b) The formation of the slots of the world.
Each slot will get an initial value, if this slot has an appropriate initial-
izer. In this case the initial value of the slot will be a data item or a
world passed only the first stage of construction (the formation). If the
slot doesn’t have an initializer, it will get an anonymous variable as the
initial value.

2. The proof of the predicate goal in all the worlds formed during the stage (1).
The proof of the constructor will be considered as successful, if the proof of
the predicate goal is successfully finished in all these worlds.

In our example the constructor



(’ADDER’, a= 1, b= 1, sum= Result)

will create a new instance of the class ’ADDER’ and will set Result = 0.

The world that is a search space for a predicate can be indicated in any
subgoal of a clause with the help of an attribute or constructor. Such subgoals
are named “far calls of predicates”. If the search space of a predicate of the
clause is indicated by the constructor, the proof of this constructor takes place
directly before the execution of the predicate, every time when the proof of the
subgoal is carried out. Thus, during the execution of the program the search
space can be created dynamically.

This idea is illustrated by the following example.

class ’PARALLEL ADDER’ is
input1 – – In this example the values of the slots
input2 – – of an instance of the class are
output – – lists of integers.
[
goal:–

loop(input1,input2,0,output).
loop([ ],[ ], ,[ ]):–!.
loop([A|R1],[B|R2],C1,[S|R3]):–

(’ADDER’, a= A, b= B, c1= C1, c2= C2) ? get state(S),
loop(R1,R2,C2,R3).

]

During the construction of an instance of the class ’PARALLEL ADDER’, a
dynamic assembling of a parallel adder takes place. The components of the device
are instances of the class ’ADDER’, created during the proof of the predicate
loop: the constructor of the instances of the class ’ADDER’ defines worlds, in
which the far calls of the predicate get state are carried out. The dynamic
construction of the worlds in this example allows the creation of an adder of any
necessary word length, depending on the length of input lists.

In the thesis [5] a theorem was proved that illustrates the logical interpre-
tation of the structural and information aspects of OOA in Actor Prolog. The
theorem states the logical correctness of the mechanism of classes considered
above.

Theorem 1. Any program written in Actor Prolog without actors and non-
logical built-in predicates can be effectively transformed (there is a global syntac-
tic transformation keeping the operational semantics) into the program in pure
Prolog (or into the formula of Horn’s subset of the first order predicate logic).

Thus, the classes, the worlds, the underdetermined sets and other means
reflecting the structural and information aspects of OOA in Actor Prolog are in
fact only syntactic sugar and have a classical declarative semantics.



3 The Logical Actors and the Repetitive Proof

The idea of the repetitive proof of subgoals and the control strategy (the actor
mechanism), that implements it, are the most interesting and most important
elements of Actor Prolog [3, 6, 4, 5].

To describe these means of the language the following concepts will be nec-
essary (see Fig. 1).
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Fig. 1. The idea of repetitive proof of subgoals.

Within the framework of the ideology of Actor Prolog a logic program is
considered as a theorem divided into the “logical actors”. The logical actors are
some subgoals of the theorem (α1, . . . , αn on the figure), interacting through
common variables (V1, . . . , Vm). The proof of this theorem is carried out in
an object-oriented search space consisting of separate worlds (W1, . . . , Wk). For
example, the box α4 on the figure denotes an actor having subgoals, that are
executed in the worlds W2 and W3.

The actor mechanism is an extension of the standard control strategy, based
on the repetitive proof of actors, and implementing modifications of the values
of the common variables. The purpose of the repetitive proof is the maintenance
of soundness and completeness of proof of the theorem.

The interaction between the actors is implemented with the help of the
“correct destructive assignment” operation. During this operation the neces-
sary modifications of the values of common variables are carried out and then
a repeated proof of actors depending on the old values of common variables is
called. If the repeated proof of all these actors is finished with success, the exe-
cution of the operation also comes to the end with success, otherwise the usual
backtracking of the logic program takes place.

Such coordination of logical actors with the help of the destructive assignment
is carried out automatically at the moment of successful completion of a proof



of each actor. Also it can be called manually with the help of special built-in
predicate ’:=’.

The built-in predicate ’:=’ implements the operation of the destructive as-
signment, modifying the values of common variables. The declarative semantics
of this predicate is exactly the same as the semantics of the usual equality ’=’ in
pure Prolog. But the operational semantics of the predicate ’:=’ is determined
by the actor mechanism.

It is possible to illustrate this idea with the following example. Let’s consider
the behavior of the following fragment of Actor Prolog program (a special prefix
@ is used in the language for definition of logical actors):

goal:– goal:–
subgoal a(X), @ subgoal a(X),
subgoal b, subgoal b,
user input(Y), user input(Y),
X := Y. X := Y.

subgoal a(1). subgoal a(1).
subgoal a(3). subgoal a(3).
subgoal a(5). subgoal a(5).
(a) (b)

Let’s note, that in the real program an operation of reading from screen
dialog or from a database could be used instead of the predicate user input.

In the case (a) actors aren’t used. In such cases Actor Prolog uses the stan-
dard control strategy as “usual” Prolog does.

So, during the proof of the goal statement the solution subgoal a(1) will be
found first. The variable X will get the value X = 1. Then subgoals subgoal b
and user input will be executed. The user will enter the value of Y (for example,
Y = 5). When the execution reaches the relation X := Y , there will be a failure
because 1 6= 5. The backtracking will be called and the program will select a
new fact subgoal a(3). The following attempt (with X = 3) also will fail (let’s
suppose that user will enter Y = 5 again). And only the third attempt (when
X = 5) will be successful. Let’s note, that the subgoal subgoal b was proved
three times, though it had no relation to the variable X.

In the case (b) the subgoal @subgoal a(X) will define a logical actor. There-
fore the first attempt to execute the subgoal X := 5 will be finished with
success. The result of this assignment will be a repeated proof of the sub-
goal subgoal a(X); the operation of destructive assignment will “neutralize”
the actor (will abolish results of its proof) and will prove it again. The fact
subgoal a(5) will be selected at this time.

We should note, that in the real program the repeated proof of an actor can
“affect” other actors, that generally will call an avalanche process of elimination
of inconsistencies between the logical actors.

Let’s note, that the neutralization of actors has no relation to the idea of
intelligent backtracking. The neutralization is not some kind of backtracking,



because the old outcomes of the proof of an actor are not rejected from the
stack during its neutralization and repeated proof (as it takes place during the
backtracking). So, the old outcomes can become again “acting”, if the standard
backtracking will happen in the program. This is the reason why some people
call the idea of repetitive proof the “anti-backtracking”.

We should note also, that there is an interdiction in the language for the
neutralization of the actors, whose proof isn’t finished yet. This rule averts the
recursive neutralization of the actors, that can recycle the program.

The basic idea that drove the development of the actor mechanism was He-
witt’s actor model of computations [14]. But the mechanism of repetitive proof
of subgoals ensures the different principle of interaction between the actors.

Here are the most important differences:

1. An information interchange between the logical actors is carried out only
through the common variables.

2. A logical actor does not know, what actors will be affected by the destructive
assignment made by it. Thus, the interacting actors do not have to know each
other “by name” and therefore the program in Actor Prolog is a strongly
distributed system.

3. All the results of the neutralization and repeated proof are backtrackable.
This is an extension of Hewitt’s actor model too.

4. Another interesting property of the logical actors is the absence of buffering
of messages between them. Generally, the common variables have a chance
to get modified before the repeated proof of an actor depending on them will
start.

5. The restriction of the logical actors is in that the results of the preceding
proof of the logical actor are inaccessible after its neutralization and repeated
proof are initiated. Our experience shows that it takes at least two logical
actors to simulate an agent with the memory.

The detailed and complete description of the actor mechanism can be found
in the paper [6] and in the thesis [5]. An abstract machine of Actor Prolog is
defined in [5].

In the thesis [5] the following theorems about the soundness and completeness
of the actor mechanism are proved:

Theorem 2. (on the soundness of the actor mechanism) The mechanism of
repetitive proof of Actor Prolog with the occur check and without the non-logical
built-in predicates is a sound control strategy.

Theorem 3. (on the completeness of the search space) Any Actor Prolog pro-
gram without the non-logical built-in predicates will find all the existing solutions,
if an infinite computation does not arise during its execution.

The definition of the declarative semantics of Actor Prolog program using
the theorem 1:



Definition 1. The declarative (model-theoretic) semantics of Actor Prolog pro-
gram without the non-logical built-in predicates is the declarative semantics of
the pure Prolog program corresponding (in the sense of the theorem 1) to the
source program after deleting of all the prefixes @.

So, all three aspects of OOA considered in the section 1 (structural, dynamic
and information) are implemented in Actor Prolog with the help of pure logical
means having a classical model-theoretic semantics.

4 The Underdetermined Sets

The information aspect of OOA is implemented in Actor Prolog with the help
of several simple and compound terms: integers, reals, symbols, text strings,
structures, lists and underdetermined sets. The last one is the most interesting
type of terms of the language and should be considered more closely.

The underdetermined sets in Actor Prolog are syntactic constructions of a
type

{a:X, b:17 | Rest} or {b:Y, c:2, a:5} .

Generally, it is possible to consider such set as an “infinite” list of pairs
“the name of element: the value of element”, where the name of an element
is a symbol or integer ≥ 0, and the value of an element is a variable or any other
term. The construction |Rest designates the “rest” of the set. If the variable
Rest = {}, then no additional elements can be presented in the set – in this case
it would be possible to write simply {a : X, b : 17}.

The algorithm of unification for underdetermined sets has been developed by
the author. We will consider this algorithm by using the example of unification
of two terms mentioned above. Let’s note, that Actor Prolog uses the ’==’ as
the equality operator as opposed to ’=’ in “usual” Prolog.

{a:X, b:17 | SetRest} == {b:Y, c:2, a:5}
During the unification the elements of the first underdetermined set will be
compared with the elements of the second one in the correspondence to the
given names. The result of the unification will become the substitutions X = 5,
Y = 17, SetRest = {c : 2}.

The underdetermined sets are used in the language as terms and as atomic
formulae. The correctness of this extension of Prolog can be easily shown: it is
possible to transform underdetermined sets into constructions of the first order
predicate logic [3, 6, 5].

Theorem 4. (lemma of theorem 1) Any Actor Prolog program without the non-
logical built-in predicates can be effectively transformed (there is a global syntactic
transformation keeping the operational semantics) into Actor Prolog program
without the underdetermined sets.



We should note, that the underdetermined set cannot contain pairs with the
identical names of elements. For example, the rest of the set {a : X, b : Y |Rest}
cannot be unified with any underdetermined set containing an element with the
name a or b. So, the rest of the underdetermined set keeps a “negative” informa-
tion about the constraints imposed on possible values of the underdetermined
set during the execution of the program.

Thus, the underdetermined sets allow us to operate with unknown entities,
specifying the boundaries of the domain to which they belong. So, an application
of the underdetermined sets is imitation of second order logic in Prolog.

There is a special type of syntactic sugar in the language: the term F in the
front of an underdetermined set – F{. . .} – denotes the additional element ”:F
of the set, where ” is a special symbol consisting of empty set of graphemes:
F{. . .} ≡ {”:F, . . .} .

Moreover, the syntax of the language allows the atomic formulae

F { sX:AX, sY:AY, . . . , sN:AN | Rest } ,

that are equivalent to the “usual” atoms

” ( { ”:F, sX:AX, sY:AY, . . . , sN:AN | Rest } ) .

A call of such subgoal will perform an associative search in the database. And if
an underdetermined set is given in the heading of a rule, such clause gets some
properties of second order function.

Let’s consider an example of usage of second order logic (see Fig. 2). This
clause is used in Actor Prolog program for synthesis of algorithms – it states
how to use the “if-fi” construction.

F { argument: A0, result: Z | Rest }:–
A0 == { even: unknown | Pairs },
A1 == { even: yes | Pairs },
A2 == { even: no | Pairs },
F { argument: A1, result: { dom: Y1 | } | Rest },
F { argument: A2, result: { dom: Y2 | } | Rest },
Z == { dom: ’if’ ([ guard ( odd (A0), Y2),

guard ( even (A0), Y1) ]) }.

Fig. 2. An example imitating second order logic in Actor Prolog.

The rule should be used, if function F cannot be calculated with the argument
A0, that can have both even and odd values. Then it is possible to represent
the result of the function F as “if-fi” construction. For this purpose two new
variables A1 and A2 are created. These variables have got all the properties (all
the pairs) of the argument A0 except the parity indicator. A1 is declared as
even and A2 is declared as odd. If the calculations of the function F with these
arguments are completed with success, this implies that the construction “if-fi”
is a valid result of the function F .



5 Related Works

The main novelty of Actor Prolog is the repetitive proof of actors, that allows
implementation of the dynamical behavior of objects and destructive assignment.

There are a lot of modern logic languages implementing dynamical behavior
of objects and destructive assignment (Visual Prolog [1], LogTalk [30], Prolog++
[18], SICStus objects [32] and others). However most of them are based on the
non-logical means (like databases, blackboards and so on) and, thus, lose the
declarative semantics (see, for example, the languages listed above). In contrast
to these languages Actor Prolog supports a clear declarative semantics of the
destructive assignment operation.

There are very interesting papers about using the transaction logic [11], linear
logic [34, 23, 17], “temporal predicates” [19] and others to capture the notion of
object modification. These approaches are pure logical and naturally fits into the
logic programming setting (see, for example, languages Lolli [23] and Forum [17]).
But Actor Prolog has the following differences:

1. Actor Prolog is based on the classical first order logic.
2. Actor Prolog isn’t yet another means for the imitation of changes and de-

structive assignment, because the actor mechanism also reveals and elimi-
nates the contradictions between the objects.

There are some approaches using daemons (Prolog++ [18], LogTalk [30]),
blackboards (BinProlog [31]), “distributed objects” (Brain Aid Prolog [21]),
database constraints [11] and so on to ensure the consistency between the ob-
jects. But these approaches aren’t logical one. In contrast, Actor Prolog ensures
the consistency, that is based on the strict declarative semantics of the objects,
instead of using user defined rules or database constraints.

So, we claim that the “jump” to the new theory in case of the state change
suits not only theoretical aspects, but also some practical demands: in fact, Actor
Prolog extends and generalizes the object-oriented approach.

It is necessary to note also, that there are a lot of promising projects using
Hewitt’s actor formalism as a means for linking concurrent logic programming
with OOP – I mean the so-called “process view” approach [9] to the logic OOP
(Concurrent Prolog [20] and others). However Actor Prolog is irrelevant to the
process view of objects.

The classes and instances of Actor Prolog are based on the well-known
“clauses view” of logic OOP [9]. But Actor Prolog has the following features:

1. Slots (global variables) in Actor Prolog are based on pure logical means. For
example, the slots can have unbound values (like the slots in the language
OL(P) [28]). However the changes of slot state are implemented in Actor
Prolog with the help of repetitive proof.

2. Actor Prolog implements implicit creation and elimination of instances of
classes. So, Actor Prolog doesn’t need imperative operation new, that looks
quite unessential in the logic languages (see, for example, [1, 30, 18, 32]). It
is important also, that the classes/instances mechanism of Actor Prolog



doesn’t need any garbage collection, because the instances of classes are elim-
inated by the usual backtracking.

3. There are strong distinction between the instances of classes and data items
in Actor Prolog. This feature allows the uniqueness of instances of the classes
in the language.

The underdetermined sets are similar to feature terms of the language LIFE
[22] and F-logic [2]. However the underdetermined sets have the following im-
portant difference – there is the notion “rest of set” in Actor Prolog. This simple
feature is of great significance to the definitional power of the language:

1. One can determine whether underdetermined set can accept some additional
elements. For example, the feature term t(a⇒ 7, b⇒ 9) can be represented
as the underdetermined set t{a : 7, b : 9| } with the anonymous rest variable.
But we cannot describe the set {a : 7, b : 9} with the help of the feature terms.

2. The unification algorithm of Actor Prolog guarantees that all names are
unique in the one underdetermined set. For instance, the underdetermined
set {a : 10, b : 20|Rest} separates the elements (Rest), that are not equal
to a and b. Thus, one can assemble some new set using these elements, for
example, {x : 100, y : 200|Rest}.

3. The underdetermined sets are more simple notion than the feature terms,
because Actor Prolog doesn’t use the type hierarchy and “tags”.

The construction {. . . | . . .} of Actor Prolog looks like insertion operator
{. . . | . . .} of so-called list-like representation of sets [10]. However there is an
important difference: the underdetermined set {a : 100, b : 200|R} states that
the rest R has no common elements with the set {a : 100, b : 200}, while the
insertion operator doesn’t.

Let’s note also, that the syntactic sugar of a type F{. . . |Rest} is a new useful
means for the higher-order logic programming [26].

These properties of the underdetermined sets are very useful for the imitation
of second order logic in Actor Prolog, though one can use any other kind of
terms to perform an associative search in the program clauses. For example,
there are very promising approaches based on the lambda terms (λProlog [16])
and “usual” sets (SPARCL [27], Flang [13] and others). “Partitions” of sets of
the language SPARCL are similar to the construction {. . . | . . .} of Actor Prolog.
But in contrast to these approaches Actor Prolog doesn’t use the lambda terms
or constraint solving mechanism (as opposed to [27, 13, 10]). So, we suppose that
the underdetermined sets are more simple, natural and practical means.

Conclusion

Let’s look into some interesting properties of the presented approach and con-
sider the possible practical applications of Actor Prolog.

First we must point out, that the control strategy of Actor Prolog (the mech-
anism of repetitive proof of subgoals) allows the correct implementation of the



destructive assignment in a logic language and thus is a new solution of the frame
problem [24, 8], free of disadvantages of the nonmonotonic logic systems [12].

The repetitive proof is a quite simple idea. It seems, it is a new basic princi-
ple of logic programming (like recursion, unification, backtracking, parallelism,
lazy evaluations, etc.). Thus, one can combine repetitive proof with other basic
principles to make some new control strategies. For example:

– The repetitive proof is combined with SLD resolution and backtracking in
Actor Prolog. So, all the results of repeated proof are backtrackable.

– One can combine repetitive proof with parallelism – the concurrent execution
of some logical actors is a quite essential idea.

– One can combine repetitive proof with a constraint solving mechanism.
– One can combine repetitive proof with lazy evaluations.
– One can combine repetitive proof with persistence (it’s more easy to imple-

ment this idea, than the persistent backtrackable states).

So, the precise definition of actor mechanism (the abstract machine) [5] is only
one of possible implementations of the repetitive proof in logic programming.

The mechanism of repetitive proof can work in strongly distributed systems
in the conditions of inconsistency and delayed updating of information. Thus,
the developed control strategy is a powerful tool of truth maintenance and can
be used in logic programming of the open systems [15, 8].

There is no doubt that the theoretical properties of the mechanism of repet-
itive proof mentioned above open some new interesting possibilities in the area
of deductive databases, decentralized artificial intelligence and WWW/Internet
logic programming.

Within the framework of the project the problem of making of intellectual
visual man-machine interface was considered as an application.

From the logical point of view, it is very convenient to consider interaction
between a person and a computer as a proof of some theorem, in which the person
is modifying the conditions of the task and the machine ensures the correctness of
the proof. In the ideology of Actor Prolog user’s input is interpreted as a correct
destructive assignment calling repeated proof of actors of the logic program. This
idea was implemented as a set of predefined classes of modeless input/output in
Actor Prolog, within the framework of RFBR project 95-01-00822. I think that
the next step in this direction will be the programming of virtual reality objects
with the help of mechanism of repetitive proof and Actor Prolog.

Another very interesting area of application of Actor Prolog is the logical
object-oriented description and analysis of complicated information systems. In
the thesis [5] the method of interactive functional modeling of information sys-
tems was developed on the basis of Actor Prolog. The central idea of this method
is the use of the object-oriented logic language for description and analysis of
SADT diagrams [7].

Currently we launch several new projects and welcome a co-operation con-
cerning the logical image processing, pattern recognition and designing of the
decisions support systems.
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