
On Semantic Link Between Logic,
Object-Oriented, Functional and Constraint

Programming ?

Alexei A. Morozov

Institute of Radio Engineering and Electronics
Russian Academy of Sciences

ul. Mokhovaya 11, Moscow, 101999 Russia
morozov@mail.cplire.ru

http://www.cplire.ru/Lab144/index.html

Abstract. In the article I investigate semantic and operational links
among object-oriented, logic, functional and constraint programming
paradigms by an example of implementing them in logic language Actor
Prolog. I show how means developed for ensuring model-theoretic seman-
tics of object-oriented and functional features in the Actor Prolog have
led to creation of a method of implementing a weak form of constraints
in the logic language. These means have provided an interesting math-
ematical property of implemented constraints, namely, they guarantee
that delaying computation and deadlocks never violate the completeness
of a logic program.

Introduction

The main difference between the Actor Prolog [11,13,12,15,14] and other logic
and constraint languages is in the control strategy that implements a modifica-
tion of logic inference in the case of updating of input values during execution of
a program. Development of this language and corresponding control strategies
are necessary for solving the following problem. The standard control strategy of
Prolog as well as its concurrent and distributed extensions (see, e.q., [7,17]) lose
the soundness, if a program is executed in the dynamic environment. Foregoing
control strategies do not support defeasance of results of computation when the
input data of the program are changed. Therefore the developers of the languages
were forced either to renounce explicitly the classical model-theoretic semantics
of the language and use some non-classical logic systems, or simply ignore the
problem. At the same time mathematically rigorous logic programming of the
systems that operate in the dynamic environment, such as Internet agents, in-
teractive systems, virtual reality systems, etc. is impossible without a solution of
this problem. One can use standard Prolog for programming intelligent agents,

? This work was supported by the Russian Foundation for Basic Research, projects
no. 00-01-00560 and 01-01-06278.

but definitely it would not be the logic programming in mathematically rigorous
sense.

Our solution of the problem is based on the principle of repeated proving
subgoals of a logic program [12,15,14]. Logic program is divided into separate
subgoals (logical actors), linked by common variables. The control strategy of
Actor Prolog automatically reveals contradictions between the current state of
environment and the results of the logic inference. Revealed contradictions are
eliminated by repeated proving of the actors, that (and only that) lose their
soundness because of the contradictions. Thus, our approach radically differs
from the non-monotonic ones, because Actor Prolog is based on the classical
first order logic; the modification of reasoning is implemented with the help of
the new control strategy, but not by the refusal of the classical logic.

Usage of logical actors in a logic language leads to a new programming
paradigm that in some sense turns inside out usual constraint programming
paradigm. Whereas a usual constraint language delays the computation if there
are no enough input data, Actor Prolog always computes some solution corre-
sponding to the model-theoretic semantics of a program. Then, Actor Prolog
modifies the logic inference and all the results, if some new data appear [14]. In
other words Actor Prolog guarantees that delayed computations and deadlocks
never violate completeness of the logic program, if there are no infinite loops in
it. Thus, Actor Prolog actually implements a sound and exhaustive search.

In this article I will restrict myself to considering computation in one sep-
arate logical actor. The detailed consideration of logical actors one can find
in [12,15,14]. Our approach to interpreting object-oriented paradigm in the logic
programming is discussed in [12].

It is interesting that whereas an implementation of logical actors does not re-
quire any use of delayed computations we have faced this concept during creation
of object-oriented means of Actor Prolog. In the section 1 a detailed arguing is
presented of the use of restricted form of delayed computations in Actor Prolog.
Our major motivation for the restriction of delaying was keeping the complete-
ness of logic inference, but the further investigation of this idea has led to a new
composition of existing engineering ideas and principles of object-oriented, func-
tional and constraint programming, that were used in other projects of recent
decade. It is shown in the section 2 that the restricted use of delaying computa-
tion provides a new declarative and operational semantics for sending messages
to data items.

This idea along with the functions discussed in the section 3 has led to a
method of implementation of a weak form of constraints in the logic language,
considered in the section 4. These means have provided required mathematical
property of implemented constraints, namely, a constraint logic program has such
model-theoretic semantics that the program is sound and complete w.r.t. this
model-theoretic semantics (if the program has no infinite loops), even if delayed
subgoals or deadlocks are present. In the section 5 Actor Prolog is compared
with other multi-paradigm logic languages.

1 Semantics of Sending Messages to Unbound Variables

Sending a message to an object (call the method of the object) is an ordinary
operation of imperative object-oriented languages:

Object.method(A,B, . . . , C)

In the context of logic programming this operation is interesting for us, because
it is not defined for the unbound values of the argument Object. Actually, it is
not clear, what a computer should do, if the variable Object is unbound? There
are several possible answers to this question. And these different answers lead
to creation of different programming styles.

1. Some programming languages simply raise a real-time error in this situation.
This solution is not interesting for us, because it ignores the declarative
semantics of a program and is not a mathematical one.

2. One can eliminate the problem by imposing certain restrictions on the syntax
of logic language (these restrictions are to be checked during the translation).
We used this approach in the early versions of Actor Prolog. However this
approach reduces the expressiveness of the language. For example, in early
versions of the language the use of instances of classes in the arguments of
predicates was prohibited. Now we have refused this approach.

3. In imperative languages one can easily solve the problem with the help of
initializing all variables in the program by some default values. The value of
any variable can be updated by the operation of destructive assignment later.
Unfortunately, this approach is unacceptable for logic languages, because
unbound variables are very important feature of the logic programming and
refusal of their usage would essentially reduce descriptive capabilities of logic
language.

4. Another solution is based on the idea of non-deterministic substitution of
objects existing in a program into the operation of message sending [3].
Thus, the operation of message sending becomes non-deterministic in general
case. Backtracking of non-deterministic program will dispatch the message
to all objects of the program. From our point of view, this approach is not
satisfactory, because it means sending the messages to all objects of the
program, including irrelevant ones. Moreover, this approach does not work,
if the objects are created dynamically, because in this case the full list of
possible receivers for a message is unknown during the execution of the
program.

5. A radical solution of the problem is full refusal of the convenient under-
standing of objects and messages. This approach is used in so-called “pro-
cess view” to implementation of objects in logic programming [3]. The idea
of this approach is in the following: the “objects” are simulated with the help
of concurrent recursive procedures and “messages” are simulated with the
help of binding of infinite lists of common variables of these predicates (this
approach corresponds to the stream parallelism [5]). Thus, in such languages
the operator of message sending “.” is not used at all. We think that this

approach is not satisfactory, because it is oriented rather towards the sim-
ulation of interacting objects, instead of being oriented towards supporting
object style of programming. In particular, we believe that the process view
badly reflects the structural and dynamic aspects of OOP [12].

6. Yet another solution is to use co-routining and delay to ensure that methods
are only dispatched when the Object is sufficiently instantiated. From our
point of view this approach is too cumbersome like previous one, because it
treats all objects in the program as separate processes. Moreover, it is not
clear what is the model-theoretic semantics of a system of these concurrent
processes.

7. Our solution of the problem is based on the idea of delayed subgoals without
co-routining.

In the Actor Prolog the operations of message sending are denoted as

World ? message(A,B, . . . , C)

The operation will be delayed, if the variable World is not bound. Then the
program continues its work according to the standard control strategy. If the
variable World is bound, the delayed operation will invoked. If invoked operation
completes successfully, the execution of the program will continue. In another
case the standard backtracking occurs in the logic program.

Delaying subgoals is widely used in functional logic languages [6,7] as well
as in constraint systems [10,17]. Our approach differs from other ones in the
following: we use delayed subgoals only for supporting model-theoretic semantics
of the operation of message sending in the language. In other words, it is only one
variable in the operation of message sending that could delay this subgoal. This
variable is the “target” variable World designating the receiver of the message.
This restricted use of delaying subgoals keeps not only the soundness, but also
the completeness of control strategy of the language according to the theorem 1
considered below.

We will not consider the problem of implementation of classes and objects in
this article, because it is possible to use any existing method for this purpose. For
example, one can use standard label/argument or label/predicate approach [3].
The following theorem is independent of implementation of classes and objects
in the language.

Theorem 1. Let us consider a logic program written in the pure Prolog with
standard control strategy. The objects are implemented in the program with the
help of standard label/argument or label/predicate method [3]. Let us assume
also that interpreter can delay the execution of message passing, if the variable
denoting target object is unbound. So, if the program has no infinite loops, our
control strategy ensures the soundness and completeness of logic inference.

The sketch of the proof. (1) Let us assume that the program was completed
and there are no delayed subgoals after its termination. In this case the soundness
and completeness of the inference is gave by the general theorem on soundness

and completeness of SLD-resolutions [9]. (2) Let us assume that there are some
delayed subgoals after the termination of the program. In this case one can assign
a dummy object Dummy to the target variables in all the delayed subgoals. The
object Dummy should contain dummy facts corresponding to all predicates of
the program, so the execution of any predicate will be successfully completed in
this object without any binding of the arguments. This assignment will cause an
invocation of all delayed subgoals. The assignment will cause no inconsistencies
among the subgoals of the program, because only the target variables can delay
subgoals in our language. The delayed subgoals will be invoked and terminated
with success. So, we will get the case (1) immediately.

Note, that the completeness of the inference in the theorem means that one
could use the language for implementing exhaustive search, i.e. the program
could find all existing solutions of a problem.

2 What Is the Semantics of Sending Messages to Terms?

It is no surprise that the notions “instance of class” and “data item” have differ-
ent semantics in the framework of logic programming. This difference is caused
by so-called problem of object identity.

The problem of object identity is that the developer of a language should
decide, what is the criterion to distinguish an object from every other one?
There are two possible answers to this question:

1. One can consider two objects as identical ones if they have the same content.
For instance, we could consider that two arrays (1, 2, 3) and (1, 2, 3) are
identical, because they have the same items and these items are placed in
the same order.

2. The notion “object” being used in practical programming have slightly more
complex semantics. For example, let us assume two objects “Window”. Let
us assume that these objects have identical attributes “color”, “title”, “text”
and so on. But these objects corresponds to different elements of graphic user
interface. So, they are different objects, though their elements are identical.

The former approach is most convenient for development of object-oriented
logic languages and is widely used in the field of deductive databases [2,4]. As
a matter of fact, it corresponds to classical understanding of the objects as
generalized data items. In the framework of this approach one can define the
operation of unification on the compound objects. For example, the unification of
arrays (1, 2, C) and (A, 2, 3) will cause unification of their elements; the variables
A and C will be instantiated by values 1 and 3 respectively. Moreover, the
unification will make these objects identical; they will be the same instance of
the class “Array”.

The second approach is closer to the real life, however, it causes some theo-
retical problems. Namely, the notions “object” (an instance of a class) and “data
item” will be different ones. It means, that we could not introduce operation of

unification on these “objects”. For instance, we cannon “unify” two graphic win-
dows on the screen, because they actually are different objects even they contain
the same image.

In Actor Prolog data items (simple and compound terms) are not instances
of classes, and instances of classes are not terms. Therefore, two compound terms
[1, 2, 3] and [A,B,C] could be unified in Actor Prolog, but two instances of the
class ’Window’ could not. An attempt to unify two variables bound with the
different instances of a class (or, especially, of some different classes) will be
always failed. Each operation of creation of the instance of a class results in
producing a new unique instance of the class. This instance could not be unified
with any other object or term. By the way, it is the reason why we name instances
of classes as the “worlds”, but not as the “objects” in Actor Prolog.

Having accepted a concept that a data item is not an instance of class, we
developed a new interpretation of the operation of message sending

World ? message(A,B, . . . , C)

for the cases, when the variable World contains not a world, but a data item
(term). In Actor Prolog we have proposed the following approach (we called it
as “placing the target into the list of arguments”).

Definition 1 (The method “placing the target into the list of argu-
ments”). In the case if the variable World contains a term, the predicate
‘message’ is called in the same world, when the current clause is executed (one
can designate this world as ‘self ’), and the term World is added to the list of
arguments of the predicate:

self ? message(World,A,B, . . . , C)

For example, expression A ? message(B), where A is a data item, denotes a
call of the predicate message(A,B) in Actor Prolog.

Theorem 2. The syntactical transformations of logic programs (keeping their
operational semantics) simulating usage of the method “placing the target into
the list of arguments” during the execution of programs do exist.

The sketch of the proof. Let us add auxiliary predicates to logic program, cor-
responding to operations of message sending. For every expression W ? p(A,B, . . . , C)
one should create two clauses

call_p(W,A,B,...,C):-

is_world(W),

W ? p(A,B,...,C).

call_p(W,A,B,...,C):-

is_data(W),

p(W,A,B,...,C).

where is world and is data are auxiliary predicates, that check if the variable W
contains a world or a data item respectively. One can eliminate the case of free
variable W with the help of method of delaying subgoals described in the sec-
tion 1. Let us replace all operations of message sending by calls of corresponding
predicates call p(W,A,B, . . . , C). So, we will obtain the program with the same
operational semantics.

The theorem 2 allows us to define the model-theoretic semantics of a logic
language implementing the method “placing the target into the list of argu-
ments”.

Definition 2. The model-theoretic semantics of a logic program P written in
the pure Prolog extended by classes and objects in the sense of the theorem 1,
placing the targets into the lists of arguments, is the model-theoretic semantics
of the program P ′ obtained from the program P with the help of transformations
in the sense of the theorem 2.

It is interesting that the separation of concepts “instance of class” and “data
item” provides a solution for one another well-known problem of logic languages.
The problem is that sending of a message to an object is an asymmetric operator
by its nature; the arguments of the operator (receiver of the message and the
predicate) play very different roles during the execution of the operator. At the
same time, the uniform use of arguments in the operations is more convenient
for the logic. For instance, the arguments A and B have the equal status in the
relation A > B. So, any attempt to read such an expression in the object-oriented
style — A receives message ’> B’ — looks a bit unnatural. Our interpretation
of the operation of message sending resolves this problem. For example, the
expression A ? ′ <′ (B) in the Actor Prolog, where A is a number, denotes a call
of usual predicate ′ <′ (A,B) in the current search space ’self ’.

3 Arithmetic Operators Are Not Constructors of
Compound Terms in Actor Prolog

Actor Prolog allows a use of the following atomic formulas in the head of a
clause:

f(A,B, . . . , C) = R

This syntactical construction is similar to equations in some functional logic
languages [6]. However, their have another semantics. Namely, a clause with
such head in Actor Prolog can be called in two different ways:

1. It can be called as a usual predicate f(A,B, . . . , C). In this case the variable
R is not used and the construction “= R” is ignored.

2. It can be called as a function ?f(A,B, . . . , C). In this case the variable R
denotes the value returned by the function. Note that the prefix “?” is used
to distinguish calls of functions and compound terms.

As a matter of fact, described syntactic construction defines two predicates
at once:

1. A predicate f(A,B, . . . , C).
2. An auxiliary predicate f ′(R,A,B, . . . , C) with additional argument R 1.

One can use calls of functions in clauses of a program in any place when a
term could be used. For example, the following atomic formula is allowed in the
language:

p(1, 2, 3, ?f(7, 8, 9))

Here the call of the function f is used as an argument of the predicate p. The
standard technique of flattening [6] is used for translating such programs. So, the
expression under consideration will be transformed into the list of two subgoals:

f’(Result,7,8,9),

p(1,2,3,Result).

where Result is a unique variable denoting the value to be returned by f .
Let us consider the canonical example of usage of functions in a logic lan-

guage, namely, a definition of the function append. One can define this function
in the Actor Prolog in the following way:

append([],L) = L.

append([H|L1],L2) = [H|?append(L1,L2)].

During the translation of the program this definition will be transformed into
the following clauses2:

append’(L,[],L).

append’(R0,[H|L1],L2):-

append’(R1,L1,L2),

R0 == [H|R1].

Theorem 3. The program written in the pure Prolog extended by the syntactic
means of Actor Prolog for implementing functions has standard model-theoretic
semantics.

The sketch of the proof. The theorem follows from the definition of considered
syntactic constructions.

The means of functional logic programming under consideration have helped
us to decide yet another well-known problem of logic programming. The problem
is that the operators +, −, ∗, etc. are conveniently used in the standard Prolog for
defining compound terms (structures), but not for denoting calls of subroutines.
For example, expression A+B in the standard Prolog denotes the term ′+′(A,B).
Thus, the use of usual arithmetic expressions in the standard Prolog is rather
inconvenient. For instance, one should use two subgoals and special built-in
predicate is in the standard Prolog to implement an ordinary call of the predicate
p with the numeric argument equal to A+B:

1 Let us denote the names of auxiliary predicates by the apostrophes.
2 Note that the predicate = of standard Prolog is denoted as == in Actor Prolog.

C is A + B,

p(C).

In the Actor Prolog we have developed another semantics for the standard
arithmetic operators. Namely, the compiler converts all arithmetic expressions
into the calls of functions. For instance, Actor Prolog will “understand” the
expression under consideration p(A + B) and will interpret it as the following
list of subgoals:

R == ?’+’(A,B),

p(R).

Certainly, we have implemented a set of built-in arithmetic functions ’+’, ’-’, ’*’,
sin, cos etc. in Actor Prolog instead of the predicate is of standard Prolog.

I will not discuss the implementation of second order functions in the Actor
Prolog in this article. These features are based on the use of so-called under-
determined sets [12] and some simple means for parameterization of predicates
and functions [13].

4 An Example of Logic Program with Constraints

Now I will consider an example of constraint logic program written in Actor
Prolog (the full text of the program is presented in the appendix). The goal of
the program is to distribute an amount of money to defined entries of budget
according to bookkeeping rules and some wishes of the user.

Built-in arithmetic predicates of Actor Prolog cannot operate with unbound
arguments (just as the built-in predicates of the standard Prolog cannot do it).
So, I will implement the constraints in the logic program on the base of consid-
ered object-oriented and functional features of the language. We have developed
a special technique for implementing logical rules “understanding” any combi-
nations of bound and unbound arguments in the head.

One can explain the idea of this technique considering the following example.
Let us implement constraint “the sum” sum(A,B,C) using the features of Actor
Prolog:

sum(A,B,C):-

C == A ? sum_ix(B),

C == B ? sum_ix(A),

B == C ? sub_ix(A).

The first subgoal in the rule is a call of auxiliary function sum ix in the object
A. The operational semantics of the language considered in the previous sec-
tions guarantees that the actual call of the function sum ix will be performed
only when the variable A has a bound value. Moreover, variable A could have
only numerical values in this example, so the first subgoal (according to the
method “placing the target into the list of arguments” considered in the sec-
tion 2) denotes the call of function with two arguments sum ix(A,B) in the

world self . According to the semantics of the Actor Prolog, this function will
be implemented as a predicate with three arguments sum ix′(C,A,B).

All three subgoals in the body of the rule sum have the same declarative
semantics, but their possible delay is caused by different variables A, B, C.
Thus, if any one of the arguments of the predicate sum gets a bound value it
causes a call of an subgoal in the clause.

The predicate sum ix(A,B) = C is defined on the base of the same principle.
The only difference is that the first argument of it always will be bound (in
another case the subgoal is delayed). Therefore we need only two subgoals in the
body of the rule:

sum_ix(A,B) = C :-

C == B ? sum_ii(A),

B == C ? sub_ii(A).

Similarly, the auxiliary predicate sum ii(A,B) = C needs only one subgoal
in the corresponding rule. And the structure of the program guarantees that the
arguments A and B of this predicate will be bound. Therefore one can safely
use the built-in function in this rule:

sum_ii(A,B) = A + B.

There are some additional predicates and functions defined in the appendix,
namely, “substraction”, “multiplication” and “is more or equal”. They are im-
plemented on the base of the same technique as the predicate sum.

The function natural number(Min,Quantity) checks if a natural number
belongs to defined interval (or generates numbers belonging to this interval).
The argument Min denotes the lower bound of the interval and the variable
Quantity denotes the quantity of natural numbers in the interval.

Let us consider the goal statement of the program now. There are two input
values of the program: a total sum of money Total and the cost of computers to
be bought NewHardware.

Total == 30000.0

NewHardware == 10000.0

The goal of the program is to calculate the following entries of the budget:
“the cash money” Cash, “the charges” Overhead, “the taxes” Tax and “the
equipment” Equipment. There are the following additional rules for calculating
these values:

1. The total sum of money includes “overhead” and “useful charges”
sum(Useful,Overhead, Total).

2. The charges are equal to 10 % of the total sum
mult(Total, 0.1, Overhead).

3. The salary includes the cash money and the taxes
sum(Cash, Tax, Salary).

4. The taxes are equal to 35.8 % of the cash money
mult(Cash, 0.358, Tax).

5. The useful charges includes the salary and the money for buying new equip-
ment sum(Equipment, Salary, Useful).

6. The sum intended for buying new equipment should not be less than the
sum required for the buying new computers
ge(Equipment,NewHardware).

7. The sum for acquisition of new equipment should never exceed 20 % of the
cost of new hardware ge(NewHardware ∗ 1.2, Equipment).

8. The sum obtained in cash should be a round one
Cash == ?natural number(1, T otal/100.0) ∗ 100.0.

The program has calculated a number of solutions of the problem. Here is
one of existing fifteen solutions:

Total = 30000.0 Overhead = 3000.0 Tax = 4296.0

Cash = 12000.0 Equipment = 10704.0

There are no unbound variables among the solutions, so the theorem 1 guar-
antees that the program has calculated all the solutions. All the calculated so-
lutions are sound w.r.t. the model-theoretic semantics of the program. Thus,
the example under consideration is a sound and complete constraint logic pro-
gram. Note that the property of completeness is certainly an achievement for a
constraint programming language.

5 Comparison with Other Approaches

Our approach to functional logic programming is simpler than many others im-
plemented earlier (see survey [6]). The goal of developing this approach was
in creating a sound and complete control strategy for the functional logic lan-
guage and increasing descriptive power of the language, rather than increasing
efficiency or computational speed. Note also that functions in Actor Prolog are
not means for implementing parallel computations, objects or featured terms, as
against to some other approaches discussed below.

A constraint functional logic language OZ [17] implements functions (by
adding an extra argument) and delays of messages like Actor Prolog. The main
difference of Actor Prolog is that its control strategy is complete in the sense of
the theorem 1. Moreover, Actor Prolog implements repeated proving subgoals of
the logic program [12,15,14]. So, one can use Actor Prolog for mathematically
correct logic programming of Internet agents and other applications operating in
the dynamic environment. Unfortunately, there is no distributed implementation
of Actor Prolog as against to OZ. Note also that Actor Prolog implements the
method “placing the target into the list of arguments”. The functions in Actor
Prolog can be used both as functions and as predicates.

The functions in Visual Prolog [18] can be used as predicates, however Visual
Prolog does not allow the use of unbound variables as objects receiving messages.

It is interesting to compare the combination of delays and non-deterministic
functions implemented in Actor Prolog with the computing model of functional

logic language Curry [7], that uses residuation and narrowing. One can say that
flattening of non-deterministic functions in combination with the standard con-
trol strategy in Actor Prolog is a simplest case of narrowing from the imple-
mentation point of view. As a result, the control strategy of Actor Prolog is
complete in the sense of the theorem 1. The interaction with the environment is
implemented in Curry on the basis of monads, as against to Actor Prolog that
implements the concept of logical actors. Moreover, we support the convenient
interpretation of object-oriented notions “class” and “instance of class”, while
the objects in the object-oriented extension of Curry (named ObjectCurry [8])
are simulated with the help of stream parallelism.

The composition of flattening and delaying subgoals is used in functional
extension NUE of logic language NU-Prolog [16] as well as in Actor Prolog.
However, functions in NUE-Prolog can be only deterministic ones as against to
Actor Prolog. The execution of a function in NUE-Prolog is delayed if there are
some unbound arguments in the head of a rule. This restriction was imposed on
NUE-Prolog, in particular, for implementing concurrent execution of functions.
Concurrency in Actor Prolog is implemented on another level of abstraction
(processes are a kind of instances of classes [14]), therefore there is no need in
such restriction in Actor Prolog.

All functions should be deterministic in the language LIFE [1] too. The exe-
cution of a function will be delayed if there are unbound arguments. It is inter-
esting, that Actor Prolog have a feature named “underdetermined sets”, that is
similar to so-called ψ-terms of LIFE. However we do not consider the underde-
termined sets as an implementation of “objects” in Actor Prolog as against to
LIFE. One can find a comparison of underdetermined sets with ψ-terms in [12].

In general our implementation of classes and objects corresponds to the stan-
dard “clauses view” to the logic OOP [3], but we have extended this approach
by restricted delaying of message sending and the method “placing the target
into the list of arguments”.

Conclusions

We have considered a subset of the control strategy of Actor Prolog, namely, the
computation of one separate logical actor. The restricted use of delaying subgoals
has led to a new composition of existing engineering ideas and principles of
object-oriented, functional and constraint programming, that were used in other
projects of recent decade. In particular, we have proposed the method “placing
the target into the list of arguments” providing new declarative and operational
semantics for sending messages to data items. In the composition with a method
of implementing functions in Actor Prolog it has led to creation of a new method
of implementation of a weak form of constraints in a logic language. These means
have provided interesting mathematical property of implemented constraints,
namely, a constraint logic program has such model-theoretic semantics that the
program is sound and complete w.r.t. this model-theoretic semantics (if the
program has no infinite loops), even if delaying subgoals or deadlocks are present.

I am grateful to Prof. Yuri V. Obukhov, Dr. Alexander F. Polupanov and all
my colleagues, friends and relatives for their help and support. I am thankful
also to the anonymous referees for their comments and suggestions.

References

1. H. Aı̈t-Kaci, B. Dumant, R. Meyer, A. Podelski, and P. van Roy.
The Wild LIFE Handbook. Digital Equipment Corporation, prepubli-
cation edition, March 1994. (http://www-cgi.cs.cmu.edu/afs/cs/project/ai-
repository/ai/lang/prolog/impl/fp_lp/life/0.html).

2. S. Ceri, G. Gottlob, and L. Tanka. Logic Programming and Databases. Springer,
1990.

3. Andrew Davison. A survey of logic programming-based object-oriented lan-
guages. In P. Wegner, A. Yonezawa, and G. Agha, editors, Research Directions
in Concurrent Object Oriented Programming, pages 42–106. MIT Press, 1993.
(http://www.cs.mu.oz.au/tr db/mu 92 03.ps.gz).

4. D. W. Embley, S. W. Liddle, and Y.-K. Ng. On harmonically combining active,
object-oriented, and deductive databases. In ADBIS’96: Proc. of the Third In-
tern. Workshop on Advances in Databases and Information Systems, pages 21–30,
Moscow, Russia, 1996. MEPhI. (http://citeseer.nj.nec.com/9806.html).

5. Gopal Gupta, Enrico Pontelli, Khayri A. M. Ali, Mats Carlsson, and
Manuel V. Hermenegildo. Parallel execution of Prolog programs: a
survey. Programming Languages and Systems, 23(4):472–602, 2001.
(http://citeseer.nj.nec.com/311564.html).

6. M. Hanus. The integration of functions into logic programming: From
theory to practice. Journal of Logic Programming, 19&20:583–628, 1994.
(http://www.informatik.uni-kiel.de/~mh/publications/papers/JLP94.html).

7. M. Hanus. A unified computation model for functional and logic pro-
gramming. In Proc. 24st ACM Symposium on Principles of Program-
ming Languages (POPL’97), pages 80–93, 1997. (http://www.informatik.uni-
kiel.de/~mh/publications/papers/POPL97.html).

8. M. Hanus, F. Huch, and P. Niederau. An object-oriented extension of the
declarative multi-paradigm language Curry. In Proc. of the 12th Interna-
tional Workshop on Implementation of Functional Languages (IFL 2000), num-
ber 2011 in LNCS, pages 89–106. Springer, 2001. (http://www.informatik.uni-
kiel.de/~mh/publications/papers/IFL00.html).

9. G. Hogger. Introduction to Logic Programming. Academic Press, 1988.

10. Joxan Jaffar and Michael J. Maher. Constraint logic program-
ming: A survey. Journal of Logic Programming, 19/20:503–581, 1994.
(http://citeseer.nj.nec.com/334926.html).

11. Alexei A. Morozov. Actor Prolog. Programmirovanie, (5):66–78, 1994. In Russian.

12. Alexei A. Morozov. Actor Prolog: an object-oriented language with the classical
declarative semantics. In K. Sagonas and P. Tarau, editors, Proceedings of the In-
ternational Workshop on Implementation of Declarative Languages (IDL’99), pages
39–53, Paris, France, September 1999. (http://www.cplire.ru/Lab144/paris.pdf).

13. Alexei A. Morozov and Yuri V. Obukhov. Actor Prolog. definition of programming
language. Preprint 2(613) of 14.06.96, IRE RAS, Moscow, Russia, June 1996. In
Russian. (http://www.cplire.ru/Lab144/index.html).

14. Alexei A. Morozov and Yuri V. Obukhov. An approach to logic pro-
gramming of intelligent agents for searching and recognizing information on
the Internet. Pattern Recognition and Image Analysis, 11(3):570–582, 2001.
(http://www.cplire.ru/Lab144/pria570m.pdf).

15. Alexei A. Morozov and Yuri V. Obukhov. On the problem of logical recognition
in the dynamic Internet environment. Pattern Recognition and Image Analysis,
11(2):454–457, 2001. Proceedings of the 5th International Conference “Pattern
Recognition and Image Analysis: new Information Technologies” PRIA. Samara,
Russia, 16–22 October 2000 (http://www.cplire.ru/Lab144/pria5.pdf).

16. Lee Naish. Adding equations to NU-Prolog. In Proceedings of The Third Interna-
tional Symposium on Programming Language Implementation and Logic Program-
ming, number 528 in LNCS, pages 15–26, Passau, Germany, August 1991. Springer.
(http://www.cs.mu.oz.au/~lee/papers/eq/).

17. P. van Roy. Logic programming in Oz with Mozart. In Proc. of the In-
ternational Conference on Logic Programming, pages 38–51. MIT Press, 1999.
(ftp://ftp.ps.uni-sb.de/pub/papers/Others/lpinoz99.ps.gz).

18. Visual Prolog Version 5.0. Language Tutorial. Prolog Development Center, Copen-
hagen, Denmark, 1997. (http://www.pdc.dk).

A An Example of Constraint Logic Program

project: ((’Main’))

class ’Main’ specializing ’Alpha’:

con = (’Console’);

[

goal:-

Total == 30000.0,

NewHardware == 10000.0,

--

sum(Useful,Overhead,Total),

mult(Total,0.1,Overhead),

sum(Cash,Tax,Salary),

mult(Cash,0.358,Tax),

sum(Equipment,Salary,Useful),

ge(Equipment,NewHardware),

ge(NewHardware*1.2,Equipment),

Cash == ?natural_number(1,Total/100.0)*100.0,

--

con ? writeln("Total = ",Total),

con ? writeln("Cash = ",Cash),

con ? writeln("Overhead = ",Overhead),

con ? writeln("Equipment = ",Equipment),

con ? writeln("Tax = ",Tax,"\n"),

--

fail.

goal:-

con ? writeln("No more solutions.").

-- The predicate "Sum"

sum(Ax,Bx,Cx):-

Cx == Ax ? sum_ix(Bx),

Cx == Bx ? sum_ix(Ax),

Bx == Cx ? sub_ix(Ax).

sum_ix(Ai,Bx) = Cx :-

Cx == Bx ? sum_ii(Ai),

Bx == Cx ? sub_ii(Ai).

sum_ii(Ai,Bi) = Ai + Bi.

-- The function "Subtraction"

sub_ix(Ai,Bx) = Cx :-

BN == Bx ? ’-’(),

Cx == BN ? sum_ii(Ai),

BN == Cx ? sub_ii(Ai),

Bx == BN ? ’-’().

sub_ii(Ai,Bi) = Ai - Bi.

-- The predicate "Multiplication"

mult(Ax,Bx,Cx):-

Cx == Ax ? mult_ix(Bx),

Cx == Bx ? mult_ix(Ax),

Ax == Cx ? div_ix(Bx).

mult_ix(Ai,Bx) = Cx:-

Cx == Bx ? mult_ii(Ai),

Bx == Cx ? div_ii(Ai).

mult_ii(Ai,Bi) = Ai * Bi.

-- The function "Division"

div_ix(Ai,Bx) = Cx :-

BI == Bx ? inv(),

Cx == BI ? mult_ii(Ai),

CI == Cx ? inv(),

Bx == CI ? mult_ii(Ai).

div_ii(Ai,Bi) = Ai / Bi :-

Bi <> 0.0.

inv(Ai) = 1 / Ai :- Ai <> 0.0.

-- The predicate "Is more or equal"

ge(Ax,Bx):-

Ax ? ge_ix(Bx).

ge_ix(Ai,Bx):-

Bx ? ’<’ (Ai).

-- The function "A natural number belongs to the interval"

natural_number(Min,_) = Min.

natural_number(Min,Quantity)

= 1 + ?natural_number(Min,Quantity-1) :-

Quantity > 1.

]

	On Semantic Link Between Logic, ObjectOriented, Functional and Constraint Programming This work was supported by the Russian Foundation for Basic Research, projects no. 000100560 and 010106278.
	Alexei A. Morozov

