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Abstract. The message of this paper is the following: there is one more
basic principle of operational semantics of logic programming (besides
backtracking, recursion, etc.) that gives a solution of challenging prob-
lem of combining strict declarative semantics of logic languages with the
dynamic behavior (that includes destructive assignment operations and
interaction with dynamic environment). We have developed this princi-
ple, named repeated proving, in the Actor Prolog logic language. In this
paper the repeated proving principle is explained with the help of an
operational semantics (abstract machine) for sequential logic programs
enhanced with logical actors. The problems of soundness and complete-
ness of the control strategy are considered.

Introduction

We address the problem of ensuring strict declarative semantics of logic lan-
guages operating in dynamic environment [1,2,3,4]. Our approach reminds of
so-called perturbation model of constraint-based languages. In the perturbation
model, unlike the standard (refinement) one, at the beginning of execution cycle
variables have specific associated values satisfying the constraints. The value of
one or more variables is perturbed by some outside influence, such as an edit
request from the user, and the task of the prover is to adjust the values of the
variables in such a way as to satisfy the constraints again [5,6].
The problem is closely related to the problem of ensuring the declarative

semantics of the destructive assignment operation in logic languages. One can
consider the updates in the outer world as a kind of destructive assignment that
violates the soundness of the logic program. In this article, this problem is solved
using the principle of repeated proving of sub-goals.
In section 1, the ideas of repeated proving and logical actors are set forth.

In section 2, a special notation is introduced along with the architecture of an
abstract machine implementing a sequential control strategy of logic programs
enhanced with logical actors. In section 3, transition diagrams of the abstract
machine are defined. In section 4, the problems of soundness and completeness
of the operational semantics are discussed.

http://www.cplire.ru/Lab144/
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1 The Idea of Repeated Proving and Logical Actors

Let us consider a logic program written in pure Prolog that has a classical
model-theoretic semantics. The idea of repeated proving consists in dividing the
AND-tree of the logic program into separate branches (sub-goals to be proved)
called logical actors (α1,. . . ,αn on the Fig. 1) that should have the following
operational properties:
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Fig. 1. The idea of repeated proving of sub-goals.

1. Common variables (V1,. . . ,Vm) are the single channel of data exchange be-
tween the actors.

2. Proving of separate actors can be fulfilled independently in arbitrary order.
3. One can cancel the results of proving of some actors without logic program
backtracking while keeping all other sub-goals of the program. After cancel-
ing results of proving of an actor, its proving is to be repeated.

Thus, one can implement a modification of reasoning. The results and conse-
cution of reasoning itself can be partially modified in the process and after the
logical inference. This makes possible to eliminate contradictions between the
results of logical reasoning and new information income from outer world.
The best example of application of the idea is implementation of long-lived

Web agents. Let us imagine a Web agent written in logic language. The purpose
of the agent is to make a logical inference on the basis of several remote data
sources and to check some assertions about the remote resources. Let us imagine
also that the agent is long-lived, i.e., it operates during a period of time that is
longer than the period of information update. Thus the agent should react on any
modification of remote resources and inform the user about the current state of
the assertions to be checked. The problem is that one cannot repeat execution of
the logic program from the beginning with any change in the outer world — the
repeat of the whole process of data collection performed during the long period of
time is inefficient and, in some cases, technically impossible. Therefore one must
change some branches of logic inference that depend on the modified data and
keep all other branches unchanged. This is the case of modification of reasoning
and the challenge is to provide soundness and (if possible) completeness of logical
reasoning under the modification.
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Another area that is recognized as a prospective application of the perturba-
tion model of constrain-based languages is graphic user interface management [6].
We have successfully applied the logical actors approach for both the logical
programming of Web agents [7,8] and visual user interface management [9]. An
additional issue of our research is development of logic object-oriented model of
asynchronous concurrent computations based on the logical actors approach [10].
In the following sections a conservative extension of standard control strategy

of (sequential) Prolog is developed that implements the repeated proving of
logical actors.

2 The Architecture of Abstract Machine

Let us consider an abstract machine that implements a sequential control strat-
egy for logic programs enhanced with logical actors. The input language of this
machine is the Horn subset of first order logic formulas enhanced with special
means implementing logical actors.
The abstract machine implements the following general principles:

1. The standard control strategy (depth-first left-to-right search) is a part of
the control strategy implemented by the abstract machine.

2. The AND-tree of logic program is to be divided into separate logical actors,
i.e., any pending sub-goal of the program is a logical actor or a part of a
logical actor.

3. Any logical actor obtains its own (local) substantiation (local values of com-
mon variables).

4. The results of proving of logical actor can be cancelled.
5. The logical actor can be proved once again after the canceling of results of
its previous proving.

6. The states of logical actors are restored during the backtracking.

Thus, the abstract machine implements the standard control strategy exactly
if there is only one logical actor in the program (i.e., all the branches of the AND-
tree belong to the same actor).
Each logical actor A of the program has its own (local) values of variables.

Actor A unifies its values with the values that belong to other actors in the
following cases only:

1. The local values are compared in the course of successful termination of
proving of actor A.

2. The local values are compared when actor A executes the ’:=’ built-in pred-
icate (this predicate will be considered later).

During the comparison of values that belong to different actors, abstract ma-
chine can cancel results of proving of some actors to provide consistency between
remaining actors of the program (to provide existence of the most general uni-
fier for all the values of all the actors of the program that remain uncancelled).
After that the abstract machine tries to prove the cancelled actors once again.
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Let us name the operation of canceling of results of proving of the actor as
neutralization of actor.
Thus, the proving of actor A includes the following main stages (see Fig. 2).

Autonomous proving of the actor

↓

Interaction with other actors of the program

Checking consistency
between the actors

→ Neutralization
of some actors

→ Repeated proving of
neutralized actors

Fig. 2. The stages of execution of logical actor.

There are three possible states of the actor:

1. Let us name an actor active if the proving of this actor is performing at this
moment and is not ended yet.

2. The actor that was successfully proved (and was not neutralized yet) is
named proven.

3. The actor is named neutral if the proving of this actor was cancelled and the
repeated proving of it was not started yet.

Neutralization of active actors is prohibited (see the formal rules of select-
ing actors for neutralization in section 3). Thus, sometimes the contradictions
between the actors of the program cannot be eliminated with the help of actor
neutralization. In this case standard backtracking occurs in the program, that
returns actor A to the stage of autonomous proving.
In the case if the abstract machine successfully eliminates contradictions

between the actors with the help of neutralization of some set NA of actors,
repeated proving of all the neutral actors occurs. If proving of all neutral actors
terminates with success (or set NA is empty), the proving of actor A termi-
nates with success. In another case backtracking occurs in the logic program,
that returns actor A to the stage of autonomous proving. Thus, a failure of the
repeated proving of any actor of the NA set will backtrack the program.
Let us introduce some special notions to define the control strategy formally:

– The state of abstract machine is a set of actors:

Γ = {A1, A2, . . . , An} ,

where Ai, i = 1 . . . n, are the actors of the program.
– Actor Ai is a branch of AND-tree created as a result of execution of so-called
actor call of a predicate @m(t1, . . . , tk):

Ai = 〈α,m(t1, . . . , tk), R〉 ,
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where α is an (unique) name of actor; m(t1, . . . , tk) is an atomic formula
that corresponds to given actor; R is a list named the results of proving of
the actor.

– The result of proving of an actor is information obtained during the proving
of the actor: instantiations of variables, backtrack points, etc.:

E = 〈β, F 〉 ,

where β is the name of actor that has invoked the proving under consider-
ation; F is a stack of so-called failure continuations that is used for imple-
mentation of backtracking.

– The failure continuation is a stack containing sub-goals to be proved during
investigation of one branch of OR-tree:

C = 〈G, σ,N,B〉 ,

where G is a list of sub-goals; σ is an instantiation of variables used during
investigation of the branch of the OR-tree under consideration; N is a list
of actor names that were neutralized during investigation of given branch of
the OR-tree; B is a list of actor names that were created during investigation
of this branch.

– The Subgoal can be a usual predicate call m(t1, . . . , tk), an actor predicate
call @m(t1, . . . , tk), compositions of sub-goals S1 and S2, S1 or S2, etc.

A special notation (@-language) necessary for definition of abstract machine
states is given in tables 1, 2.

The semantics of formulas of kind Γ.α {GL = S : G,Subst = σ} is the follow-
ing: there is an actor α in the Γ state of abstract machine, that has the following
properties:

1. The GL cell situated on the top of the stack of failure continuations that is
situated on the top of the stack of results of proving of the α actor has value
S : G (a list).

2. The Subst cell situated on the top of the stack of failure continuations that
is situated on the top of the stack of results of proving of the α actor has
value σ.

In a similar manner, a formula of kind Γ.α = 〈α,M,R〉 has the following
semantics: there is an actor α in state Γ of abstract machine. The value of this
actor is equal to 〈α,M,R〉. One can use given formulas in the following sense:
“The Γ state, such that there is an actor α that has the following properties. . . ”.

We will use also formulas of the following kind in the transition diagrams:
Γ ′ = Γ : α {GL :=G}. The semantics of these formulas is “The Γ ′ state of
abstract machine differs from the Γ state in that a new value G was assigned to
the GL cell that is situated on the top of the stack of failure continuations that
is situated on the top of the stack of results of proving of the α actor.”
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Table 1. The table of basic symbols of the @-language.

Notion Symbol Definition Typical
elements

Constant Const a, b, c

Variable V ar X, Y, Z

Functor Fun f

Term Term

Const;
V ar;
f(t1, . . . , tk), k ≥ 1

t, v, u

Atomic formula Atom m(t1, . . . , tk), k ≥ 0 M

Name of actor Name
α, β, γ, . . . ; τ ; ξ,
where τ and ξ are special names

Sub-goal Subgoal

true; fail; M ; @M ;
S1 and S2; S1 or S2;
del([α1, . . . , αn]);
back([α1, . . . , αn]);
wait(γ); redo(γ);
neutralize({α1, . . . , αn});
restart({α1, . . . , αn})

S

Procedure Procedure M :− S P

Definition of proce-
dures

Procedures Function Atom→ Subgoal D

Table 2. Definition of the @-language.

Notion Symbol Definition Typical
elements

State of abstract ma-
chine

State {A1, A2, . . . , An}, n ≥ 1 Γ

Actor Actor 〈α,M,R〉 A

List of results of prov-
ing

RL

nil;
E : R, is a list with head E
and rest R.

R

Results of one proving Result
〈β, F 〉; neutral
where neutral is a special symbol

E

Stack of failure con-
tinuations

FL
nil;
C : F

F

Failure continuation Cont 〈G, σ,N,B〉 C

List of sub-goals
(named also success
continuation)

GL nil; success; failure;S : G G

Substitution Subst σ, θ, . . . ; ε (ε is the empty substitution)

List of names of neu-
tral actors

Neutr [α1, . . . , αn] N

List of names of cre-
ated actors

Built [α1, . . . , αn] B
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A logic program is defined as a set D of procedures1 (see designations of the
@-language in table 1) and an initial state of the program:

Γ 0(τ) =

〈

τ,m(t1, . . . , tk),
〈
ξ,
〈
m(t1, . . . , tk) : nil, ε, [ ], [ ]

〉
: nil

〉
: nil

〉

,

where τ is the name of an actor (the target actor hereafter) that is active in the
Γ state, and ξ is dummy name of an actor situated in outer world (the external
actor) that has invoked the program under consideration. All the actors except
for the τ actor are proven2 in the Γ 0 state of the abstract machine:

∀α : Γ 0.α {Name 6= τ} : is proven(Γ 0, α)

The abstract machine can reach one of two final states:

1. The success state: ΓSUCCESS .τ {Cont = 〈success, σ,N,B〉}, where τ is the
target actor introduced in the Γ 0 initial state.

2. The failure state: ΓFAILURE .τ {FL = 〈failure, ε, [ ], [ ]〉 : nil}.

Note, that the success and the failure states are alternative in accordance with
given definitions. Deadlocks never occur in the abstract machine.

3 Transition System

The transition system of abstract machine is defined with the help of set of
transition schemas and set Λ of labels (let us denote the typical label by l).
Let us consider the main stages of the proving of logical actor (Fig. 2).

3.1 Autonomous Proving of Actor

Execution of logic program is performed in accordance with the standard control
strategy (depth-first left-to-right search) on this stage of proving of the actor.
This strategy is implemented with the help of the transition schemas: True, Rec,
Loc1, Seq, and Alt. Some auxiliary schemas implement creation, deletion, and
modification of logical actors during the proving.
True — elimination of the true sub-goal during the execution of actor α.

Γ.α {GL = true : G}
〈True,α〉
−−−−−−−−→ Γ.α {GL :=G}

The semantics of this transition schema is the following one: “If current state Γ
of abstract machine is such that an actor α exists and current list of sub-goals
of this actor GL = true : G, then state Γ can be transformed into new one. In
new state of abstract machine current list of sub-goals of actor α is modified:

1 Let us do not use different procedures with the same functor (name and arity) of
heading M to simplify the presentation.

2 The is proven predicate is defined in section 3.2.
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GL := G. All other attributes of actor α and all other actors of the abstract
machine will not changed during the transformation.”
Rec — a call of predicate m during the execution of actor α. The rename :

P → P ′ function implements renaming of variables of given procedure in the
standard manner. The mgu : (M1,M2)→ σ function computes the most general
unifier of terms M1, M2 (iff the unifier exists).

Γ.α {GL = m(t1, . . . , tk) : G,Subst = σ}
∃ P ∈ D :

rename(P ) = (m(u′1, . . . , u
′
k):− S

′) ∧
∃ θ = mgu(m(t1, . . . , tk)σ,m(u′1, . . . , u

′
k))

Γ ′ = Γ : α {GL := S′ : G,Subst := σθ}

Γ
〈Rec,α〉
−−−−−−−→ Γ ′

where 〈Rec, α〉 is the label of transition scheme under consideration. The state-
ments over the line determine the conditions when the Rec schema can be per-
formed. The statements under the line explain what is the difference between
old state Γ and new state Γ ′ that can be obtained with the help of the Rec
transition schema.
Loc1 — backtracking of given actor α. The ‘−’ function designates the dif-

ference between lists: L−L′ = L′′, if L′′ = [α1, . . . , αn] and L = [α1, . . . , αn|L′].
The ‘+’ function designates concatenation of lists.

Γ.α {FL = 〈S : G, σ,N,B〉 : (〈G′, σ′, N ′, B′〉 : F ′)} ,
S = fail ∨
(S = m(t1, . . . , tk) ∧ ¬∃ P ∈ D :
rename(P ) = (M ′:− S′) ∧
∃ θ = mgu(m(t1, . . . , tk)σ,M ′))

Γ ′ = Γ : α {FL := 〈back(N ′′ +B′′) : (del(B′′) : G′) , σ′, N ′, B′〉 : F ′} ,
N ′′ = N −N ′, B′′ = B −B′

Γ
〈Loc1,α〉−−−−−−−→ Γ ′

Loc2 — recognition of necessity to transmit backtracking from actor α to the
actor that has invoked current proving of actor α.

Γ.α {FL = 〈S : G, σ,N,B〉 : nil} ,
S = fail ∨
(S = m(t1, . . . , tk) ∧ ¬∃ P ∈ D :
rename(P ) = (M ′:− S′) ∧
∃ θ = mgu(m(t1, . . . , tk)σ,M ′))

Γ ′ = Γ : α {FL := 〈back(N +B) : (del(B) : failure) , ε, [ ], [ ]〉 : nil}

Γ
〈Loc2,α〉−−−−−−−→ Γ ′

Glo — transmission of backtracking from actor α to actor β.

Γ.α {Result = 〈β, 〈failure, ε, [ ], [ ]〉 : nil〉}
Γ.β {Subgoal = wait(α)}
Γ ′ = Γ : β {GL := fail : nil}

Γ
〈Glo,β,α〉

−−−−−−−−→ Γ ′
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Back0 — termination of process of recovering the states of actors during
backtracking of the program.

Γ.α {GL = back([ ]) : G}
〈Back0,α〉−−−−−−−−−→ Γ.α {GL :=G}

Back1 — recovery of the active or the proven state of actor γ during back-
tracking of actor α.

Γ.α {GL = back([γ|BList]) : Gα}
Γ.γ {RL = 〈β, 〈Gγ , σγ , Nγ , Bγ〉 : Fγ〉 : Rγ}
Γ ′ = Γ : α {GL := back(Nγ +Bγ +BList) : (del(Bγ) : Gα)} ,

γ {RL :=Rγ}

Γ
〈Back1,α,γ〉−−−−−−−−−−→ Γ ′

Back2 — recovery of the neutral state of actor γ during backtracking of α.

Γ.α {GL = back([γ|BList]) : Gα}
Γ.γ {RL = neutral : Rγ}
Γ ′ = Γ : α {GL := back(BList) : Gα} ,

γ {RL :=Rγ}

Γ
〈Back2,α,γ〉−−−−−−−−−−→ Γ ′

Del0 — termination of deletion of actors during backtracking of actor α.

Γ.α {GL = del([ ]) : G}
〈Del0,α〉−−−−−−−→ Γ.α {GL :=G}

Del1 — deletion of actor γ during backtracking of actor α. The ‘/’ function
designates deletion of actor: Γ1/γ = Γ2, such that {〈γ,Mγ , Rγ〉} ∪ Γ2 = Γ1,
Γ1 6= Γ2.

Γ.α {Subgoal = del([γ|DList])}
Γ ′ = (Γ : α {Subgoal := del(DList)}) /γ

Γ
〈Del1,α,γ〉−−−−−−−−−→ Γ ′

Seq — execution of conjunction of sub-goals of actor α.

Γ.α {GL = (S1 and S2) : G}
〈Seq,α〉
−−−−−−−→ Γ.α {GL := S1 : (S2 : G)}

Alt — execution of disjunction of sub-goals of actor α.

Γ.α {FL = 〈(S1 or S2) : G, σ,N,B〉 : F}
〈Alt,α〉
−−−−−−→

Γ.α {FL := 〈S1 : G, σ,N,B〉 : (〈S2 : G, σ,N,B〉 : F )}

New1 — execution of actor predicate call @m during execution of actor α.
The code auxiliary function is used for preparation of arguments of actor

predicate call. This function (see Fig. 3) provides transfer of maximal quantity
of information about the values of the arguments of predicate into the γ actor
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to be created. The code function transfers the values of the instantiated vari-
ables and copies the variables that are unbound. The copy auxiliary function
copies the values of variables. The new variable function creates new variables.
The is variable function checks if the argument is an (unbound) variable. The
not exists(Γ, γ) expression means 〈γ,Mγ , Fγ〉 /∈ Γ .

Γ.α {FL = 〈@m(t1, . . . , tk) : G, σ,N,B〉 : F}
not exists(Γ, γ)
∃ P ∈ D :

rename(P ) = (m(u′1, . . . , u
′
k):− S

′) ∧
([v1, . . . , vk] , σ

′) := code([t1, . . . , tk] , σ) ∧
∃ θ = mgu(m(v1, . . . , vk),m(u′1, . . . , u

′
k))

Γ ′ =

(

Γ : α

{
FL := 〈wait(γ) : G, σ′, N, [γ|B]〉
: (〈redo(γ) : G, σ′, N, [γ|B]〉 : F )

})

∪

{〈γ,m(v1, . . . , vk), 〈α, 〈S′ : nil, θ, [ ], [ ]〉 : nil〉 : nil〉}

Γ
〈New1,α,γ〉−−−−−−−−−−→ Γ ′

code : [{ti}, σ]→ [{t′i}, σ
′] , i = 1 . . . n

σ′ := σ;
do i = 1 . . . n

if ti = f({uj}), j = 1 . . . k
[{vj}, σ′] := code({uj}, σ);
t′i := f({vj}); σ := σ

′

elsif is variable(ti)
if is variable(tiσ) t

′
i := ti

else [t′i, σ
′] := copy(ti, σ);

σ := σ′

fi

else t′i := ti
fi

od

copy : [t, σ]→ [t′, σ′]
if tσ = f({uj}), j = 1 . . . k

σ′ := σ;
do j = 1 . . . k

if is variable(uj)
u′j := new variable();
σ′ := σ ∪

{
u′j = uj

}

else
[
u′j , σ

′
]
:= copy(uj , σ)

fi;
σ := σ′

od;
t′ := f({uj}), j = 1 . . . k

else t′ := tσ; σ′ := σ
fi

Fig. 3. Definitions of coding and copying functions.

New2 — recognition of that an actor predicate @m call cannot be performed
during the execution of actor α.

Γ.α {Subgoal = @m(t1, . . . , tk), Subst = σ}
¬∃ P ∈ D :

rename(P ) = (m(u′1, . . . , u
′
k):− S

′) ∧
([v1, . . . , vk] , σ

′) := code([t1, . . . , tk] , σ) ∧
∃ θ = mgu(m(v1, . . . , vk),m(u′1, . . . , u

′
k))

Γ ′ = Γ : α {GL := fail : nil}

Γ
〈New2,α〉−−−−−−−−→ Γ ′
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Redo1 — backtracking of the γ actor during backtracking of actor α.

Γ.α {FL = 〈redo(γ) : Gα, σα, Nα, Bα〉 : Fα}
Γ.γ

{
RL =

〈
α, 〈Gγ , σγ , Nγ , Bγ〉 :

(
C ′γ : F

′
γ

)〉
: Rγ

}

Γ ′ = Γ : α

{
FL := 〈wait(γ) : Gα, σα, Nα, Bα〉
: (〈redo(γ) : Gα, σα, Nα, Bα〉 : Fα)

}

,

γ
{
RL :=

〈
α, 〈fail : nil, σγ , Nγ , Bγ〉 :

(
C ′γ : F

′
γ

)〉
: Rγ

}

Γ
〈Redo1,α,γ〉−−−−−−−−−−→ Γ ′

Redo2 — recognition of that backtracking of actor γ cannot be performed
during execution of actor α.

Γ.α {Subgoal = redo(γ)}
Γ.γ {RL = 〈α,Cγ : nil〉 : Rγ}
Γ ′ = Γ : α {GL := fail : nil}

Γ
〈Redo2,α,γ〉−−−−−−−−−−→ Γ ′

3.2 Interaction of Logical Actors

The abstract machine implements the following operations on this stage:

1. The comparison of substitutions that correspond to various actors of the
program.

2. Neutralization of some actors.
3. Repeated proving of neutral actors.

Check1 — checking if the actors of the program are consistent (during ter-
mination of proving of actor α).
Let us introduce some additional notions:

– is neutral(Γ, γ)
def
= Γ.γ {Result = neutral};

– is active(Γ, γ)
def
= ¬is neutral(Γ, γ) ∧ Γ.γ {GL 6= success};

– is proven(Γ, γ)
def
= ¬is neutral(Γ, γ) ∧ Γ.γ {GL = success};

– SUBST (Γ, γ) is substitution σγ , Γ.γ {Subst = σγ}, or empty substitution
ε, if is neutral(Γ, γ);

– does exist(Γ, γ)
def
= 〈γ,Mγ , Rγ〉 ∈ Γ ;

– Σ(Γ, {α1, . . . , αn}) =
n⋃

i=1

SUBST (Γ, αi) — is a set of substitution assign-

ments corresponding to all the actors α1, . . . , αn in state Γ .

Definition 1. Set S of substitution assignments is conflicting one, if there are
two subsets σ1 and σ2 and a variable X such that:

1. σ1 and σ2 are substitutions.
2. These substitutions gives values V1 and V2 to the X variable, that have no
most general unifier.
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inconsistent(S)
def
= ∃ σ1 ⊂ S ∧ ∃ σ2 ⊂ S ∧ ∃X : ¬∃mgu(Xσ1, Xσ2).

Definition 2. consistent(S)
def
= ¬inconsistent(S)— is a consistent set of sub-

stitution assignments.

Definition 3. A set of names NA of actors to be neutralized and proved repeat-
edly may be neutralized(Γ,NA) :

1. ∀β ∈ NA : does exist(Γ, β) ∧ is proven(Γ, β);
2. ∀β ∈ NA :
∃ set of actors {αi} , i = 1, . . . , k : does exist(Γ, αi) :
inconsistent(Σ({α1, . . . , αk, β})) ∧ consistent(Σ({α1, . . . , αk}));

3. A set of substitution equations of actors of any subset of Γ that has no
common elements with the NA set should be consistent one.

The condition (2) excludes any unnecessary neutralization of actors that are
irrelevant to the contradictions that should be eliminated.

Γ.α {GL = nil}
∃NA : may be neutralized(Γ,NA)
Γ ′ = Γ : α {GL := neutralize(NA) : (restart(NA) : success)}

Γ
〈Check1,α〉−−−−−−−−−→ Γ ′

Check2 — recognition of impossibility to eliminate contradictions between
the actors with the help of neutralization of some actors (during termination of
proving of actor α).

Γ.α {GL = nil}
¬∃NA : may be neutralized(Γ,NA)
Γ ′ = Γ : α {GL := fail : nil}

Γ
〈Check2,α〉−−−−−−−−−→ Γ ′

Neut0 — termination of neutralization of actors (during termination of prov-
ing of actor α).

Γ.α {GL = neutralize(∅) : G}
〈Neut0,α〉−−−−−−−−−→ Γ.α {GL :=G}

Neut1 — neutralization of actor γ during execution of actor α:

Γ.α {Cont = 〈neutralize({γ} ∪NA′) : G, σ,N,B〉} , γ /∈ NA′

Γ.γ {RL = R}
Γ ′ = Γ : α {Cont := 〈neutralize(NA′) : G, σ, [γ|N ], B〉} ,

γ {RL := neutral : R}

Γ
〈Neut1,α,γ〉−−−−−−−−−−→ Γ ′

Succ — termination of proving of actor α with success.

Γ.α {GL = restart(∅) : G}
〈Succ,α〉
−−−−−−−→ Γ.α {GL :=G}
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Call — invocation of repeated proving of actor γ during execution of α.

Γ.α {FL = 〈restart({γ} ∪RA′) : G, σ,N,B〉 : F} , γ /∈ RA′

Γ.γ = 〈γ,m(v1, . . . , vk), R〉

Γ ′ = Γ : α

{
FL := 〈wait(γ) : (restart(RA′) : G) , σ, [γ|N ], B〉
: (〈redo(γ) : (restart(RA′) : G) , σ, [γ|N ], B〉 : F )

}

,

γ {RL := 〈α, 〈m(v1, . . . , vk) : nil, ε, [ ], [ ]〉 : nil〉 : R}

Γ
〈Call,α,γ〉

−−−−−−−−−→ Γ ′

Note that the Check1, the Neut1, and the Call schemas make abstract ma-
chine nondeterministic one.
Con— resumption of proving of actor β after termination of proving of actor

α that was invoked by actor β.

Γ.α {GL = success}
Γ.β {GL = wait(α) : G}
Γ ′ = Γ : β {GL :=G}

Γ
〈Con,β,α〉

−−−−−−−−−→ Γ ′

Note that defined abstract machine provides a possibility for modeling de-
structive assignment of variables with the help of logical actors. For instance,
the X := Y build-in predicate is implemented in the Actor Prolog language,
that invokes the interaction between the actors of the program. The operational
semantics of the ’:=’ predicate is straightforward one:

1. The predicate tries to unify the X and the Y terms.
2. If the most general unifier exists, the interaction of actors of the program is
performed in accordance with the rules described above.

3. If neutralization and repeated proving of actors provides consistency between
the actors of the program, the execution of the ’:=’ predicate terminates with
success. In another case backtracking occurs in the program.

The model-theoretic semantics of this predicate is exactly the same as the se-
mantics of the usual equality ’=’ in pure Prolog and the operational semantics
of the ’=’ predicate is a special case of the ’:=’ predicate operational semantics.

4 Operational Semantics

The operational semantics of sequential logic program enhanced with logical
actors is a map O that projects definition of procedures D and an initial state
of program Γ 0, Γ 0.τ = 〈τ,m(t1, . . . , tk), Rτ 〉, into the set of finite and infinite
chains of states obtained with the help of transition schemas defined above.

Definition 4. Operational semantics O:

O[D,Γ 0]
def
=

{
Γ 0

l1−→ Γ1
l2−→ . . .

ln−→ ΓSUCCESSn

}
∪

{
Γ 0

l1−→ Γ1
l2−→ . . .

ln−→ ΓFAILUREn

}
∪

{
Γ 0

l1−→ Γ1
l2−→ . . .

}
.
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Note that the model-theoretic semantics of defined @-language strictly cor-
responds to the model-theoretic semantics of pure Prolog without negation.

Definition 5. An initial set of actor constraints is a set of logical statements
that corresponds to all the proven actors of initial state Γ 0:

Init
def
=
∧

i

Mi for all 〈αi,Mi, Ri〉 ∈ Γ
0, such that is proven(Γ 0, αi).

Proposition 1 (on soundness of the operational semantics). The oper-
ational semantics O is sound, i.e., the success final state of the program can be
obtained only if union of procedure definitions D with the negation of conjunction
of initial set Init and goal statement m(t1, . . . , tk) is unsatisfiable:

(
Γ 0

?
−→ ΓSUCCESS

)
⇒ (D ∪ {¬ (Init ∧ m(t1, . . . , tk))} |= ⊥) .

Proposition 2 (on completeness of the operational semantics). The suc-
cess final state of the program will be obtained if a substitution θ exists, such that

D |= (Init ∧ m(t1, . . . , tk)) θ,

and no infinite computations arise: Γ 0
?
−→ ΓSUCCESS .

Thus, the program can fall into an infinite computation even if a success
branch is present in the AND-OR tree, like the standard sequential Prolog.
Nevertheless the additional operation of neutralization of actors cannot pro-

voke looping of the program, because the neutralization of active actors is pro-
hibited in schema Check1.
The practical use of the control strategy under consideration requires that

the abstract machine stops after the obtaining of the first success final state
despite the fact that the abstract machine can implement the exhaustive search
until all existed answers are computed or an infinite computation occurs. This
restriction corresponds to the perturbation model of constraint-based languages,
i.e., the problem to be solved by the abstract machine is to fit given system of
constraints to new information income from outer world only. After that, the
abstract machine will wait for a new outside influence.

Conclusion

The logical actors concept gives an alternative to the nonmonotonic approach in
logic programming. It forms a basis for solving the problem of ensuring sound-
ness and completeness of the destructive assignment operation as well as strict
classical model-theoretic semantics of logic programs operating in dynamic en-
vironment (such as graphical user interface and Internet).
The repeated proving of sub-goals allows to modify the logical reasoning

during the execution of a logic program. Following the principle of modifiable
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reasoning, we have developed concurrent object-oriented logic language Actor
Prolog that ensures soundness of logic programs operating under conditions of
permanent altering and updating of input information [11,8,12]. The ideas stated
in this paper are approved by practical experiments with visual logic program-
ming and Web agent logic programming [7].
The author is grateful to Prof. Yu.V. Obukhov, Dr. A.F. Polupanov, Dr.

A.N. Kruglov, and Dr. S.V. Remizov (IRE RAS) for help and support in imple-
menting the project, to Acad. Yu.I. Zhuravlev and Prof. V.A. Zakharov (Moscow
State University) for fruitful discussions of the problem.
This work was supported by RFBR, project no. 06-07-89302.
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